
IBM University and Vocational Education

BA-Stuttgart | 1-Nov-2003 | Arne Heimeshoff © 2003 IBM Corporation

Programming Language C

Learning about the Procedural Programming
Structured Programming with C

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation2

Agenda

� Part I: Introduction
� Part II: Derived Data Types
� Part III:

IBM University and Vocational Education

BA-Stuttgart | 1-Nov-2003 | Arne Heimeshoff © 2003 IBM Corporation

Part I: Introduction

Historical and Technical Overview

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation4

Table of contents

History

Algorithms

Nassi-Shneiderman-Diagrams

Programming Tools

Variables

Preferences / Attributes of C

Constant Values

Operators and Operations

Functions

Classes of Data Types

Local and Global Variables

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation5

History

� In 1967 Thompson invented the programming language B in which
the operation system UNIX is implemented

� He looked for a superassembler that is able to move programs to
other systems and has the following attributes:

– structured programming is possible

– close to the hardware implementation like assembler

– performance is nearly equal to assembler

� 1972 Ritchie (Bell Labs) worked on the programming language C, a
language with a code generator and predefined data types

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation6

History

� In 1973 UNIX was implemented in C (that means 1/10 of the
assembler code)

� 1978 Kerninghan and Ritchie have written a book named “The
Programming Language C” what is today known as the C-Bibel

� 1989 there were several dialects unified within the ANSI C-Standard

– libraries had been included standard, too

– today, the ANSI standard has been replaced by the ISO standard
ISO / IEC 9899

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation7

History FORTRAN

BASIC ALGOL60 COBOL

BLISS
B C PL

ALGOL68 SIMULA Pascal PL/I

Smalltalk

Concurrent
Pascal

Modula MESA Euclid CLU

Ada

C++

Java

C

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation8

Table of contents

History

Algorithms

Nassi-Shneiderman-Diagrams

Programming Tools

Variables

Preferences / Attributes of C

Constant Values

Operators and Operations

Functions

Classes of Data Types

Local and Global Variables

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation9

Every problem to be solved with a procedural
programming language needs at least one
algorithm!

Algorithms

� An algorithm is a code of practice to solve a problem, similar to a
cooking recipe

� An algorithm needs
– objects

– operations, that means operators

– defined state at the beginning

– defined state at the end

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation10

Algorithm of Euklid

The algorithm of Euklid looks for the greatest divisor in common.

� You need some object of a defined data type
– call it: x and y

– at the beginning each of the variables has a value

– at the end their value is their greatest common divisor

� You will need some operations, such as
compare

substract

assign

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation11

Algorithm of Euklid

� There is a sequence of commands (operations)

� Some constructs will have influence on this sequence of commands
– choice of alternative ways (selection)

– repetition of instructions (iteration)

– linear order of commands (sequence)

� You have a starting point and an end, between which you find the
commands

Between the start and the end of an algorithm
you have a sequence of commands.

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation12

Table of contents

History

Algorithms

Nassi-Shneiderman-Diagrams

Programming Tools

Variables

Preferences / Attributes of C

Constant Values

Operators and Operations

Functions

Classes of Data Types

Local and Global Variables

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation13

Nassi-Shneiderman-Diagrams

� The order in which commands are executed is named the
control flow

� directives which can influence the order of executing the commands
are control structures

� The sequence of executing instructions within the program are
organized by structured programming.

� To show the structure of a program use the Nassi-Shneiderman-
Diagrams

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation14

Nassi-Shneiderman-Diagrams

� subroutines will be used
several times, reusable
program code

� subroutine will make a program
code easier to read for other
people

� go into details step by step
down to the program code

� e.g. input, process, output

� with complex problems you
need some iterations to come
to the program code level

� normally you do not go to the
program code level because
then you have redundant
information � not preferable

Introduction > Nassi-Shneiderman-Diagrams

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation15

Nassi-Shneiderman-Diagrams

“To make the control flow of a program
visible Nassi and Shneiderman have
designed the structograms which are often
called Nassi-Shneiderman-Diagrams.
These diagrams are utilities of structured
programming and don’t contain e.g. goto
statements”

Introduction > Nassi-Shneiderman-Diagrams > Summary

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation16

Nassi-Shneiderman

� allowed are all instruments
from the structured
programming

– sequence

– iteration

– selection

� The flowcharts will be replaced
by the Nassi-Shneiderman-
Diagrams

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation17

� pass, sequence

� block

� iteration

Nassi-Shneiderman

block name

condition

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation18

Nassi-Shneiderman

� iteration

� selection

� break

condition

true false

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation19

Table of contents

History

Algorithms

Nassi-Shneiderman-Diagrams

Programming Tools

Variables

Preferences / Attributes of C

Constant Values

Operators and Operations

Functions

Classes of Data Types

Local and Global Variables

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation20

Programming Tools

� Preprocessor
� Compiler

– lexical analysis

– syntax breakdown

– semantic interpretation

– code generation

� linker
– static links

– dynamic links

� runtime environment
� loader
� debugger
� development environment

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation21

Preprocessor

� tasks of the preprocessor
– include files

– substitute text

– conditional compiling

� working structure of the preprocessor
– join lines (new line and ‘\’)

– sample the program code into tokens and space characters

– replace comments with blanks

– include files

– substitute macros

– change reserved characters (‘\...’)

– assemble adjoining character strings

The preprocessor is the first working entity to
become an executable program.

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation22

� inserted elements are parts of

– type names (defined, composed)

– data types

– macros

– defined constants

– prototypes of functions

– printf ();
– scanf ();

Preprocessor

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation23

Compiler

� lexical analysis
scanner, symbols

� syntactical analysis
right sequence of symbols

� semantical analysis
correct types
names within the scope of application
static semantic
dynamic semantic � runtime environment

� code generation
object code
close to the architecture � machine code

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation24

� binder

� executable program

� relative addressing
computed to the beginning of a file

� linker map
add the address ranges from other
files
common address range for the
program

� executable program

Linker

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation25

Runtime Environment

� all subroutines to execute the
program

� interaction with the operating
system

memory allocation
input / output

� memory management
stack, heap

� dynamic semantic

� error reporting
core dump

� threats, exceptions

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation26

� program goes to the computer’s
memory

� virtual addresses

� memory management

Loader

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation27

Debugger

� error analysis

� error detection

� stop points

� variable values

� no substitution for methodical
programming

Programming is not coding!!!

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation28

� integrated environment for software
development

� compiler, linker, loader, debugger,
editor

� project management

Development Environment

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation29

Additional Information

� ACSII Code
128 characters

� enhanced ASCII Code
256 characters

� EBCDIC Code
256 chcracters

� nationally adapted codes
e.g. country specific enhanced
ASCII Code

Introduction > Programming Tools

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation30

ASCII Code

�127o111_95O79?63/47�31�15

~126n110^94N78>62.46�30�14

}125m109]93M77=61-45�29�13

|124l108\92L76<60,44	28
12

{123k107[91K75;59+43�27�11

z122j106Z90J74:58*42�26
10

y121i105Y89I73957)41�25�9

x120h104X88H72856(40�24�8

w119g103W87G71755´39�23•7

v118f102V86F70654&38�22�6

u117e101U85E69553%37§21�5

t116d100T84D68452$36¶20�4

s115c99S83C67351#35�19�3

r114b98R82B66250“34�18�2

q113a97Q81A65149!33�17�1

p112`96P80@6404832�160

ASCII Code with 128 characters

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation31

2nd Part of enhanced ASCII Code

enhanced part of ASCII Code

255´239�223¤207�191»175ƒ159Å143

 254¯238Ì222!206¥190«174×158Ä142

²253Ý237¦221"205¢189¡173Ø157ì141

³252ý236#220$204%188¼172£156î140

¹251Ù235&219'203(187½171ø155ï139

·250Û234)218*202+186¬170Ü154è138

¨249Ú233,217-201.185®169Ö153ë137

°248Þ232Ï216/200©184¿168ÿ152ê136

¸247þ231Î215Ã199À183º167ù151ç135

÷246µ230Í214ã198Â182ª166û150å134

§245Õ229ı2130197Á181Ñ165ò149à133

¶244õ228È21211962180ñ164ö148ä132

¾243Ò227Ë21131954179ú163ô147â131

5242Ô226Ê21061947178ó162Æ146é130

±241ß225Ð20981939177í161æ145ü129

-240Ó224ð208:192;176á160É144Ç128

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation32

Table of contents

History

Algorithms

Nassi-Shneiderman-Diagrams

Programming Tools

Variables

Preferences / Attributes of C

Constant Values

Operators and Operations

Functions

Classes of Data Types

Local and Global Variables

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation33

Variables in C

� a variable has four
characteristics

– name

– data type

– value

– address

� numeric data types
– char

– short

– int

– float

– double

Introduction > Variables

� derived data types
– struct

– union

– pointer

– arrays

Details about data types and variables will
follow later on.

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation34

Table of contents

History

Algorithms

Nassi-Shneiderman-Diagrams

Programming Tools

Variables

Preferences / Attributes of C

Constant Values

Operators and Operations

Functions

Classes of Data Types

Local and Global Variables

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation35

Preferences of C

� C is applicable for common applications

� efficient was of putting algorithms in place

� sufficient number of control structures

� many data types

� powerful amount of operators

� operators are not applicable for complex objects (e.g. strings)
exception: structures

� no instructions for input and output

� great portability (there may be other languages with higher
portability)

� modular programming (modular compiling)

� program code is very close to the architecture

C – one of the most recommended programming
languages for programming close to the architecture.

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation36

Preferences of C

� C has an imperative style

� Imperative programming languages are

– closest to the architecture assembler

– procedural FORTRAN, Pascal, C

– object oriented Smalltalk, Java, C++

� Declarative languages
The desired result is described directly and a translator
engine has to generate the processing steps

– LISP, Prolog

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation37

Preferences of C

� lexical conventions

– predefined characters within C

– lexical units

– names

– keywords (reserved)

– literal and symbolic constants

– control codes

One Character is different from another
character object.

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation38

Preferences of C

� lexical units
– tokens

– parser

� lexical elements
– names

– reserved keywords

– literal constants

– constant character strings

– operators

– grammar elements

The parser analysis the program code and generates an
interim code that consists of lexical elements.

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation39

Preferences of C

� C is a case sensitive programming language

– counter and Counter are different

� dividing characters

– characters between the visible characters (blanks, tab stops, form feed,
comments, operators, …)

� comments

– /* this is a valid comment */

– // this is C++ style of comments

– one or more comments within another comment is not allowed!

Comments are the most helpful thing in program
code! Don’t forget to comment on your code!

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation40

Preferences of C

� names
– internal: only valid within one file (names of macros at the

preprocessor section are internal, too)

– external: names of variables and functions that are valid for more
than one file

– 31 characters are important for internal

– 6 characters can be used for external

Introduction > Preferences of C

Style guide: all names are written in non capital
characters; only constants are written in capital letters.

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation41

Preferences of C

� reserved keywords
– ISO standard: 32 keywords

– auto, break, case, char, const, continue, default, do, double,
else, enum, extern, float, for, goto, if, int, long, register, return,
short, signed, sizeof, static, struct, switch, typedef, union,
unsigned, void, volatile, while

� constants
– literal

– symbolic

Introduction > Preferences of C

Style guide: all names are written in non capital
characters; only constants are written in capitals.

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation42

Table of contents

History

Algorithms

Nassi-Shneiderman-Diagrams

Programming Tools

Variables

Preferences / Attributes of C

Constant Values

Operators and Operations

Functions

Classes of Data Types

Local and Global Variables

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation43

Constants

� In C there are two types constants:

– literal constants

– symbolic constants

There is a big difference between these
two types of constants.

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation44

Use of Constants

� The syntax allows usage of
constants or constant expressions.

� Anywhere where the syntax allows
constants or constant expressions
you can use literal or symbolic
constants.

� There are differences between
symbolic and literal constants.

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation45

Symbolic Constants

� Symbolic constants are defined by preprocessor keywords

#define PI 3.1415926

� This type of constant may be used for simplifying the change
of constant parameters within your program code.

� If a parameter variable is used as a literal constant then you
have to change each appearance of this parameter.

You have to compile the program again after changing
the symbolic constant.

Are you sure you haven’t forgotten one?

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation46

� constants of integer type

� floating point constants

� enumeration constants

� constants of string type

Each of these constants have a
data type, such as int, float, char, …

Literal Constants

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation47

Literal Constants of Integer Types

� Integer constants like 1234 that are compatible with the data type
int are of this data type.

� Integer constants can be displayed within different numbering
systems, e.g. decimal, binary, octal, hexadecimal

� A number is octal if there is a 0 (zero) on the first position not
followed by a ‘x ’ or ‘X’ character.

� 036637

� A number is hexadecimal if there is a 0 (zero) on the first position
followed by a ‘x ’ or ‘X’ character.

� 0x3AC3F

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation48

Integer Constants

� You can enforce an integer constant to be of a certain data
type.

12445L � is of data type long

2234l � is of data type long , too

123ul � is of data type unsigned long

� If the value is greater than the data type can accept the next
appropriate data type is used implicitly.

int � long int � unsigned long int

int � unsigned int � long int � unsigned long int

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation49

Floating Point Constants

� Some examples for floating point constants are:

300.0 300 in float

1E3 1000 in float

3.E2

.55E-3

� The first part of the scientific notation (before E)
is Mantissa the second part (after the E) is the
exponent.

Every floating point constant is of data type float by
default. 10.0 is float, 10.0f is float, too.

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation50

Enumeration Constants

� One example for enumeration constants is TRUEand
FALSE.

enum boolean {FALSE, TRUE};

� The first value in enumerations has the numeric value 0
(zero) the next one 1, then 2, and so on …

TRUE +1 = FALSE

� The data type of the value TRUE(and FALSE, too) is int .

enum test {ALPHA, BETA, GAMMA};

enum test {ALPHA=5, BETA=3, GAMMA=7};

IBM University and Vocational Education

Programming Language C | Introduction | Arne Heimeshoff © 2003 IBM Corporation51

Constants of String Type

� Character constants have only one character in it,
indicated by single quotation marks.

‘a’ ‘b’ ‘+’

� Constants of string type mean more than one character,
indicated by quotation marks

“hello world!\n”

� Escape sequences are alternative representations
‘\n’ one character with CRLF meaning

Although the string constant is placed in memory as
char type, the programmer accesses an int type.

