

A FLAT MODEL BASE DEVICE DRIVER FOR OS/2™

by

Steven J. Mastrianni

Unionville, Connecticut

Copyright © 1997 Steven J. Mastrianni Page 1 3/30/2005

Abstract of Project

The recent interest in Network Computers (NC) has kindled somewhat of

a rebirth in as a platform for an Intel-based NC. With the bloated

Workplace Shell and other Graphical User Interface (GUI) components

removed, the OS/2 kernel makes a good foundation for a Java-based

workstation. It requires the installation of a Java Virtual Machine (JVM)

and the required operating system support for the Java Application

Programming Interface (API). Once enabled, the system will allow for the

execution of Java applets and Java applications using the underlying OS/2

kernel for memory management, scheduling, dispatching, and device

support.

In order to take advantage of the new crop of device architectures now

emerging, such as Universal Serial Bus (USB), Firewire, and others, the

OS/2 device driver interface must be redesigned to support both the older

16-bit device drivers and a new crop of 32-bit device drivers1. In order to

insure continued support, the drivers should be written with currently

1 We have elected not to cover Virtual Device Drivers, or VDDs that are used to virtualize
hardware for real-mode MS-DOS applications.

Copyright © 1997 Steven J. Mastrianni Page 2 3/30/2005

available and supported 32-bit tools such as Visual Age C++ for OS/2 and

the Microsoft 32-bit macro assembler.

To allow OS/2 to be used in a network configuration, perhaps in a diskless

mode, the system must be able to dynamically load device drivers as

needed from a local disk or from a server. This is a major change in the

way OS/2 operates today. Currently, all device drivers are loaded at boot

time, and are specified in the special CONFIG.SYS file. Adding or deleting

a driver from the system requires that the CONFIG.SYS file is edited and

the system rebooted to effect the change. Therefore, we regard the

dynamic device driver-loading feature to be an integral part of our

requirements and necessary for the successful implementation of our

design.

Copyright © 1997 Steven J. Mastrianni Page 3 3/30/2005

Trademarks and Copyrights

Microsoft, MS-DOS, Visual C++, Win32, Win32s, Windows, and Windows
NT are registered trademarks of the Microsoft Corporation.

IBM, OS/2, and Presentation Manager are registered trademarks of
International Business Machines Corporation.

Intel and Pentium are registered trademarks of the Intel Corporation.

Other product and company names mentioned herein might be the
trademarks of their respective owners.

Copyright © 1997 Steven J. Mastrianni Page 4 3/30/2005

Table of Contents

Chapter 1. - Introduction.. 9

Problem .. 9
Purpose .. 10
Importance of Study ... 10
Scope of Study ... 11
Rationale of Study .. 11
Definition of Terms ... 11
Overview of the Study .. 15
OS/2 Overview ... 22
The Proposal .. 31

Chapter 2. - Review of Related Literature ... 37
Requirements ... 37
Addressing.. 41
Legacy Support .. 42

Chapter 3. - Methodology .. 46
Approach .. 46
Method and Database of Study .. 47
Validity of Data ... 48
Originality and Limitations of Data .. 48
Summary .. 49

Chapter 4. - Analysis of the Problem ... 53
How We Tested .. 53
Header File Conversion.. 55
Driver Code Conversion ... 56
Driver Loading .. 59
Resource Allocation.. 61
Driver Information File .. 61
Recovery .. 65
Device Locator.. 66
Configuration Manager ... 67
Dynamic Loading.. 68
Dynamic Driver Binding .. 69
Debugger Modifications.. 70

Chapter 5. - Summary and Conclusions.. 71
Conclusions .. 71
Recommended Steps ... 72
Size .. 72

Copyright © 1997 Steven J. Mastrianni Page 5 3/30/2005

Changes to OS/2 .. 72
Conclusions .. 76

Bibliography... 77
Appendix A – Listings ... 79

Copyright © 1997 Steven J. Mastrianni Page 6 3/30/2005

List of Figures

Figure 1-1. The Role of the device driver. ... 19
Figure 1-2. Real mode address calculation. .. 23
Figure 1-3. 80286 protect mode addressing. ... 24
Figure 1-4. 80386 linear addressing. ... 25
Figure 4.1. Sample DIF File... 62
Figure 4.2. DIF File Interrupt Entry .. 63

Copyright © 1997 Steven J. Mastrianni Page 7 3/30/2005

Listings

Figure A-1. OS/2 parallel device driver, 16-bit version. 82
Figure A-2. Parallel driver header file. ... 82
Figure A-3. Driver library header file, 16-bit. .. 90
Figure A-4. Driver library header file, 32-bit. .. 101
Figure A-5. Simple OS/2 parallel device driver, 32-bit version............... 104
Figure A-6. Memory-mapped device driver, 16-bit version. 110
Figure A-7. Memory-mapped driver, 32-bit version. 117
Figure A-8. Serial device driver, 16-bit version. 127
Figure A-9. Serial device driver, 32-bit version. 137

Copyright © 1997 Steven J. Mastrianni Page 8 3/30/2005

Chapter 1. - Introduction

Problem

OS/2 device driver development is at a standstill. The OS/2 device driver

model was derived from a DOS device driver model. It retains much of the

16-bit architecture of the 16-bit Intel 80286 processor on which was first

implemented in OS/2 1.0. Since that time, the mainstream Personal

Computer (PC) processor has grown from a 16-bit architecture to a 32-bit

architecture. Since the newer processors are backward compatible, the

older driver software still runs without change. However, 16-bit compilers

for OS/2 are no longer available, stunting the growth of new driver

development. The mixed mode of 16-bit and 32-bit interfaces makes driver

development difficult, and programmers spend too much time creating

specialized code to handle the address conversions.

Copyright © 1997 Steven J. Mastrianni Page 9 3/30/2005

Purpose

The purpose of this study is to identify the amount of work necessary to

convert existing 16-bit device drivers to 32-bit device drivers, and to

provide a framework for new device driver development using 32-bit tools.

It should be noted that this proposal describes the changes necessary to

convert existing 16-bit device drivers to 32-bit, and to allow new 32-bit

drivers to co-exist with the older model. While it would have been easy to

design a new model based on current technology such as the I2O

initiative, the goal of this proposal was to preserve the investment in

current device driver development and training.

Importance of Study

This study will help determine if converting existing 16-bit device drivers to

32-bit is feasible, and if the return on programming investment is worth the

effort. The data gathered, along with the conclusions, will determine the

level of funding and programming resources to allocate.

Copyright © 1997 Steven J. Mastrianni Page 10 3/30/2005

Scope of Study

This proposal suggests a new device driver model for the OS/2 operating

system, and as such, contains several design suggestions and criteria that

are specific to OS/2. OS/2 is a hybrid system, part 16-bit and part 32-bit.

Many of the functions or methods used or presented in this design are

specific to the OS/2 operating system, and therefore not necessarily valid

or applicable for other operating systems such as Windows NT or Unix.

Rationale of Study

Since the OS/2 device driver development environment can be

problematic, we decided that the best way to verify our design was to

actually implement it. Many design flaws or omissions occur only under

load, in actual operating conditions, especially those issues related to

timing, race conditions, or interrupt latency. By using real working device

drivers, we felt that we could expose these problems more quickly than

any other method.

Definition of Terms

API. Application Programming Interface, a definition of what external

functions are available to a program and how to call them.

Copyright © 1997 Steven J. Mastrianni Page 11 3/30/2005

Arbitrate. In programming terms, the ability of the device driver to act as a

“traffic cop” to grant or deny hardware access to an application.

Abstract (verb). In programming terms, the verb abstract means to “hide

the details”. A device driver abstracts or “hides the details” of the low-level

device architecture from the application software.

Device Driver. The software program that acts as the interface between

an application program and a hardware device. The device driver is

responsible for converting high-level requests from the application

program into low-level commands that the hardware can understand.

DMA. Direct Memory Access, a method of transferring data to and from

memory by using a specialized piece of hardware.

Dynamic Linking. An architecture that allows external references to be

resolved at program load time. This results in smaller executables but a

slightly longer initial load time.

Copyright © 1997 Steven J. Mastrianni Page 12 3/30/2005

File System. The internal subsystem in an operating system that controls

access to hardware devices.

Flat Model. A term that describes a 32-bit addressing mode in which the

address contains the actual memory page information and offset. The

processor hardware decodes the physical page information. Flat pointers

can directly access up to 4GB of memory.

Hardware. The physical electrical components of the computer system or

device interface.

Legacy Devices. A term used to denote older devices and their support

hardware. These devices are usually ISA bus devices.

Multiprocessor. A computer architecture where the computer is equipped

with more than one Central Processing Unit (CPU).

Polling. A programming method that involves waiting in a tight loop for a

particular bit to change state or a particular event to occur. Polling results

in inefficient use of the processor cycles because other programs are

prevented from running while polling is being performed.

Copyright © 1997 Steven J. Mastrianni Page 13 3/30/2005

Protect Mode. A specific mode of operation for the Intel 80x86 series of

processors that provides for hardware-based memory protection and a 32-

bit flat memory architecture.

Real Mode. A specific mode of operation for the Intel 80x86 series of

processors that provides a one-megabyte memory size with no memory

protection. MS-DOS runs in real mode.

Segment:Offset. A method of memory addressing for the Intel 80x86

series of processors that forms a 32-bit address from a 16-bit selector and

a 16-bit offset. The selector is actually an index into a table of memory

descriptors that contain the physical page number and access rights of the

memory. The offset portion is only large enough to describe a 64K

segment of memory.

Spinlock. A specialized program loop that prevents other operations or

programs in the system for being executed while the special loop is being

executed.

Copyright © 1997 Steven J. Mastrianni Page 14 3/30/2005

Thunking. The process of converting 32-bit pointers to their 16-bit

equivalents, and 16-bit pointers to their 32-bit equivalents. Thunking from

32 to 16 can be very time-consuming.

Overview of the Study

Early Personal Computer (PC) operating systems such as MS-DOS were

single tasking, i.e.; they were capable of executing only one program at a

time. Even though these systems were somewhat slow, they were still

much faster than the devices they needed to access. Most output

information was sent to a line printer and most input data was read from a

keyboard. If a program needed to perform input or output (I/O) to one of

these devices, the system would effectively remain idle while waiting for

the data to be sent or entered. This method of performing I/O, called

polling, was very inefficient. Even though the computer was capable of

executing thousands of instructions in between each keystroke, it was

kept busy while I/O was being performed. If a program needed to print

something on a printer, it would send the data one character at a time,

waiting for the device to acknowledge that the character was accepted

before sending the next character. Since the computer processed the data

faster than it could be printed, it would sit idle for much of the time waiting

for the printer to do its job. As technology progressed, faster I/O devices

Copyright © 1997 Steven J. Mastrianni Page 15 3/30/2005

became available, but so did faster computers. The computer was at the

mercy of the input and output devices it needed to access.

The problem was exacerbated by the fact that each one of these I/O

devices required data in a different form. Some devices required data in a

serial fashion, bit by bit, while others required data 8 or 16 bits at a time.

Some line printers printed on 8 1/2 by 11-inch paper and some on 11 by

14-inch paper. Magnetic tape storage devices used different size tapes

and formats, and disk storage devices differed in both the amount and the

method of storage.

The device driver solved the problems associated with the different types

of devices, and provided a more efficient method of utilizing the

processing power of the computer while it was performing input and output

operations. The device driver is a small program inserted between the

program performing the I/O and the actual hardware device such as a

printer or magnetic disk drive.

The device driver is programmed with the physical characteristics of the

device, and acts as an interface between the program and the device. For

example, the device driver for a line printer might be programmed with the

Copyright © 1997 Steven J. Mastrianni Page 16 3/30/2005

characteristics of the printer, such as the number of characters per line or

the size of the paper that the device supports. The device driver for a

magnetic tape drive might be programmed with the physical

characteristics of the tape mechanism, such as the tape format and

density. The ability of the device driver to hide or abstract the details of a

hardware device is a fundamental concept in the design of today’s

operating systems and applications software. Programmers writing

software do not need detailed knowledge of the devices that the program

may use, and do not have to provide specialized programs to access

those devices. For example, the software for an application that needs to

send data to a printer can be written the same way no matter what type of

printer is installed on the system. The same data can be sent to a high-

resolution laser printer or a low-resolution dot-matrix printer with the same

results. Old printers can be deleted, or new types of printers added without

the need to change the application software.

Device drivers also address the problem of polling. Since the device driver

has intimate knowledge of how to deal with the hardware, there is no

reason why the application program has to wait around for each character

to be printed. It can, for example, send the device driver a block of 256

characters and return to continue executing the application program while

Copyright © 1997 Steven J. Mastrianni Page 17 3/30/2005

the device driver handles the details of sending the data to the device.

When the device driver finishes sending all the data, it notifies the

application program that it needs more data. The application then sends

the next block of data to the device driver for processing. While the device

driver is performing the I/O, the application can continue processing data

or performing other operations. This results in more efficient use of the

system processor.

The use of device drivers became even more important when operating

systems such as Windows and OS/2 appeared that could run more than

one program simultaneously. In systems that can run many programs at

the same time, it is possible that more than one program might try to

access a hardware device at the same time. The device driver performs

an important function by controlling access to the hardware device. In

some cases, such as a printer, the device driver serializes or arbitrates

access to the device so that one program’s output does not appear in the

middle of another program’s output. Once the printer has begun servicing

a program, subsequent attempts to access the printer are refused, and the

“busy” indication is sent back to the requesting program. The requesting

program can then decide to wait for the printer to become available or to

access the printer at a later time.

Copyright © 1997 Steven J. Mastrianni Page 18 3/30/2005

Device drivers are an irreplaceable and critical link between the operating

system and the I/O device (see Figure 1-1). They can interact directly with

the Central Processing Unit (CPU) and operating system, and in some

cases, can allow or block the execution of programs. Device drivers

usually operate at the most trusted level of system integrity, so the device

driver writer must test the driver code thoroughly to assure bug-free

operation. Failures at a device driver level can be fatal causing the system

to crash or experience a complete loss of data.

PROGRAM

OPERATING SYSTEM

DEVICE
DRIVER

DEVICE
DRIVER

DEVICE
DRIVER

DEVICE
DRIVER

DISPLAY PRINTER CD ROM KEYBOARD

Figure 1-1. The Role of the device driver.

Copyright © 1997 Steven J. Mastrianni Page 19 3/30/2005

The use of computers for graphics processing has become widespread. It

would be impossible to support the many types of graphics devices

without device drivers. Today’s hardware offers dozens of different

resolutions and sizes. For instance, color graphics terminals can be had in

pixel sizes of 800 by 600, 1024 by 768, 1280 by 1024, and as high as

2048 by 2048. Each resolution can support a different number of bits per

pixel, or color depth.

Printers vary in dots per inch (DPI), font selection, and interface type.

Since all of these formats and configurations are in use, the supplier of a

graphics design package that needs to send data to a printer would have

to support all of the configurations in order to offer a marketable software

package. A graphics application program might direct the output device to

print a line of text in Helvetica bold italic beginning at column 3, line 2.

Each graphics output device, however, might use a different command to

print the line at column 3, line 2, so the device driver resolves these types

of differences. Instead of having to write, debug, and support all of these

special device drivers, the graphics application reads from and writes to

these graphics devices using a standard set of APIs, which in turn call the

device driver specific to the device currently installed. Without this

standardized interface, the software vendor would be forced to supply

Copyright © 1997 Steven J. Mastrianni Page 20 3/30/2005

device drivers for the hundreds of different types of input and output

devices. Some word processors, for example, would be forced to supply

hundreds of printer device drivers to support all makes and models of

printers, from daisy wheel to high-speed laser and color printers.

In summary, the device driver:

 • Contains the specific device characteristics and removes any

responsibility of the application program for having knowledge of

the particular device.

 • Allows for device independence by providing for a common

program interface, allowing the application program to read from or

write to generic devices. It also handles the necessary translation

or conversion that may be required by the specific device.

 • Serializes access to the device, preventing other programs from

corrupting input or output data by attempting to access the device

at the same time.

Copyright © 1997 Steven J. Mastrianni Page 21 3/30/2005

 • Protects the operating system and the devices owned by the

operating system from errant programs which may try to write to

them, causing the system to crash.

OS/2 Overview

OS/2, introduced in late 1987, was originally called MS-DOS 4.0. It was

later named MS-DOS 5.0, and finally OS/2. OS/2 was designed to break

the MS-DOS 640KB real mode memory barrier by utilizing the protect

mode of the 80286 processor. The protect mode provided direct

addressing of up to 16 megabytes (MB) of memory and a protected

environment where badly written programs could not affect the integrity of

other programs or the operating system.

The Intel processors are capable of operating in one of two modes. These

are called real mode and protect mode. One of the most popular computer

operating systems, MS-DOS, runs in real mode. In real mode, the

processor is capable of addressing up to one megabyte of physical

memory. This is due to the addressing structure, which allows for a 20-bit

address in the form of a segment and offset (see Figure 1-2).

Copyright © 1997 Steven J. Mastrianni Page 22 3/30/2005

Figure 1-2. Real mode address calculation.

Real mode allows a program to access any location within the one-

megabyte address space. There are no protection mechanisms to prevent

programs from accidentally (or purposely) writing into another program’s

memory area. There is also no protection from a program writing directly

to a device, say the disk, and causing data loss or corruption. MS-DOS

applications that fail generally hang the system and call for a <ctrl-alt-del>

reboot, or in some cases, a power-off and a power-on reboot (POR). The

real mode environment is also ripe for viruses or other types of sabotage

programs to run freely. Since no protection mechanisms are in place,

these types of “Trojan horses” are free to infect programs and data with

ease.

Copyright © 1997 Steven J. Mastrianni Page 23 3/30/2005

The protect mode of the Intel 80286 processor permits direct addressing

of memory up to 16MB, while the Intel 80386 and 80486 processors

support the direct addressing of up to four gigabytes (4,000,000,000

bytes). The 80286 processor uses a 16-bit selector and 16-bit offset to

address memory (see Figure 1-3). A selector is an index into a table that

holds the actual address of the memory location.

Figure 1-3. 80286 protect mode addressing.

The offset portion is the same as the offset in real mode addressing. This

mode of addressing is commonly referred to as the 16:16 addressing.

Under OS/2, the 80386 and 80486 processors address memory using a

linear address. The linear address is a 32-bit flat address consisting of

three parts. The first part, which is 10 bits long, is an index into a page

Copyright © 1997 Steven J. Mastrianni Page 24 3/30/2005

table referred to as the PTE. The second part, which is also 10 bits long,

specifies a particular page frame within the page table. The third part is an

offset into the page frame. The page information is decoded by the paging

hardware located on the processor. The physical address is formed by

locating the PTE, indexing to the correct page frame, and adding in the

offset portion of the address. This mode of addressing is referred to as the

0:32 or flat addressing (see Figure 1-4).

Figure 1-4. 80386 linear addressing.

The protect mode provides for hardware memory protection, prohibiting a

program from accessing memory owned by another program. While a

defective program in real mode can bring down the entire system (a

problem frequently encountered by systems running MS-DOS). A protect

mode program that fails in a multitasking operating system merely reports

the error and is terminated. Other programs running at the time continue

to run uninterrupted.

Copyright © 1997 Steven J. Mastrianni Page 25 3/30/2005

To accomplish this memory protection, the processor keeps a list of

memory belonging to a program in the program’s Local Descriptor Table,

or LDT. When a program attempts to access a memory address, the

processor hardware verifies that the address of the memory is within the

memory bounds defined by the program’s LDT. If it is not, the processor

generates an exception and the program is terminated.

The processor also keeps a second list of memory called the Global

Descriptor Table, or GDT. The GDT usually contains a list of the memory

owned by the operating system, and is only accessible by the operating

system and device drivers. Application programs have no direct access to

the GDT except through a device driver.

OS/2 was designed with several goals in mind. First, OS/2 had to provide

a graphical user interface that was consistent across applications and

graphics hardware.

Second, OS/2 had to support Dynamic Linking. With Dynamic Linking,

some functions required by an application can reside in a separate file,

which is loaded only at run time. This feature makes application file sizes

Copyright © 1997 Steven J. Mastrianni Page 26 3/30/2005

smaller, allows more than one client to use the Dynamic Link Library

(DLL), and allows functionality to be placed in the DLL without changing

the application code base. The majority of OS/2 is implemented in DLLs.

Third, OS/2 had to provide an efficient, preemptive multitasking kernel.

The kernel had to run several programs at once, yet provide an

environment where critical programs could get access to the CPU when

necessary. OS/2 uses a priority-based preemptive scheduler. The

preemptive nature of the OS/2 scheduler allows it to “take away” the CPU

from a currently running application and assign it to another application.

OS/2’s smallest granularity of execution is the thread, which is an

instance of execution. Processes consist of one or more threads, and

each thread can execute at its own priority. OS/2 has four priority classes

with 32 levels within each priority class. Threads with higher priority can

interrupt the execution of lower priority threads.

Fourth, OS/2 had to provide a robust, protected environment with virtual

memory. OS/2 uses the protect-mode of the 80286 and above processors,

which has built-in hardware memory protection. Applications that attempt

to read or to write from memory that is not in their specific address space

Copyright © 1997 Steven J. Mastrianni Page 27 3/30/2005

are terminated without compromising the operating system integrity. OS/2

uses an efficient memory allocation and paging scheme consisting of a

combination of first-fit, Least Recently Used (LRU), and compaction to

minimize fragmentation.

Fifth, OS/2 had to support the older 16-bit protect-mode applications that

used the segment:offset addressing scheme as well as new, 32-bit flat

model executables. OS/2 offers a rich set of Application Program

Interfaces (APIs) to allow programs to access system services. The OS/2

APIs are classified into eight major categories; file systems, graphics

interface, inter-process communications, systems services,

process/thread management, memory management, signals, and dynamic

linking.

Finally, OS/2 had to run most MS-DOS programs in an MS-DOS-

compatibility mode. OS/2 allows MS-DOS programs to run in their own

one megabyte of virtual memory space, providing protection from other

MS-DOS or OS/2 programs.

Copyright © 1997 Steven J. Mastrianni Page 28 3/30/2005

At the time OS/2 was written, the most powerful mainstream processor

available for the PC market was the Intel 80286. At that time, memory was

still quite expensive, and most PC systems were shipped with a maximum

of 4MB of memory installed. Accordingly, the operating system and

support code was written using 16-bit tools that produced smaller and

faster code. Because of space and speed considerations, a majority of the

OS/2 kernel and supporting DLLs were written in assembly language.

After Microsoft and IBM split on the direction for OS/2, IBM embarked on a

project to convert 16-bit OS/2 into a 32-bit operating system. This was

now possible for two reasons. First, the mainstream processor shipped

with Intel-based PCs was the 80386, a full 32-bit processor. Second, the

price of memory had dropped dramatically, and most systems were now

shipped with up to 8MB of memory2.

During this conversion, IBM elected to make a radical change in the user

interface rather than to rewrite the OS/2 kernel. This was done for two

reasons. The first was that like most companies, they had limited

programming resources that could be brought to bear on the rewrite. The

2 Converting any 16-bit program to 32 bits always caused an increase in size and
execution time. Contrary to popular belief, few, if any 32-bit programs run as fast as their
16-bit counterparts.

Copyright © 1997 Steven J. Mastrianni Page 29 3/30/2005

second reason was that OS/2 device drivers were difficult to write, and

IBM wanted to retain support for any existing 16-bit device drivers that had

already been written. All of the system’s internal data structures were byte

or word aligned, the scheduling, dispatching, and virtual memory data

structures were all written in assembly language, and accessed via 16-bit

selector:offset addresses. The file system, the heart of the device driver

interface, was also written entirely in 16-bit code. IBM made the decision

to work on the area of OS/2 that would make the most visual impact while

leaving all of the internal plumbing untouched. This turned out to be a

serious long-term error in judgement.

For tools, IBM used the Microsoft 16-bit assembler and Microsoft 16-bit C

compiler. For the few 32-bit components that were part of OS/2, IBM used

an unreleased 32-bit version of Microsoft’s C compiler. Worse, some

components would compile and link only with certain versions of the

assembler or compiler. Microsoft, seizing a golden opportunity,

discontinued the availability of the 16-bit tools and never released the 32-

bit version of their 32-bit C compiler. This brought a grinding halt to

mainstream device driver development, relegating it instead to a few

independent driver development shops that still had a license to the old

Copyright © 1997 Steven J. Mastrianni Page 30 3/30/2005

tools. Today, almost seven years later, OS/2 still suffers from those fateful

decisions to leave the file system and device driver interface untouched.

The Proposal

This proposal suggests a new flat-model base device driver model written

in C. Appendix A also suggests a new base driver model written in C++

utilizing Object Oriented (OO) design techniques3. OO purists may find

some of the C++ code and techniques objectionable because they don’t

adhere to a strict OO paradigm. However, it is our observation that

interaction directly with the hardware requires a somewhat procedural

approach, even if an object oriented language is used. Using C++

presents some possible problems, such as the timely collection of dead

objects from the system heap. In OS/2, the system heap is swappable,

which may lead to several page faults when destructors are called or

during system heap compaction.

We have chosen C because of its universal acceptance and its ability to

easily perform low-level functions. In Appendix A, we present a sample

3 We have not included Presentation Device Drivers, drivers for printers, displays, and
other bit-mapped devices in this discussion. Under the current architecture, there is
nothing to prevent these drivers, which are essentially DLLs, from being written in 32-bit
code. They should, however, be able to be dynamically loaded and configured similar to
base device drivers.

Copyright © 1997 Steven J. Mastrianni Page 31 3/30/2005

driver written in C++. Although some C++ programmers may find this

model more “comfortable”, we see no advantage in using C++ over

conventional C. The allocation of objects in a device driver is usually done

at load time, and the resources remain locked while the device driver is

loaded in memory. If, for example, the driver needed to access a buffer at

interrupt time, it would not be possible to allocate the buffer or swap it in

off the disk in time to service the interrupt, so the buffer must remain in

memory. Also, C++ calls object destructors automatically, which might

result in an object going out of scope at just the wrong time. This could

cause intermittent or fatal errors, and would be difficult to track down. A

feature of C++ is the ability to return to the heap the space that was

allocated by objects that have since gone out of scope. The ability to

perform timely garbage collection and heap compaction can be critical for

the proper operation of a C++ device driver. Because there are some

issues related to C++ that we are not sure can be easily solved, we

decided to use C for the purposes of this design.

Copyright © 1997 Steven J. Mastrianni Page 32 3/30/2005

Our proposal intends to solve the following problems:

1. Currently, device drivers are loaded in the order that they appear in the

CONFIG.SYS file. This can cause conflicts in certain hardware

configurations where port or memory addresses may overlap.

2. In the current implementation of OS/2, no file I/O services are available

from within the driver4. There is no method of logging activity or events

during driver execution.

3. There are no profiling services available at the driver level.

4. There are virtually no supported 16-bit compilers and assemblers with

which to build new device drivers.

5. Device drivers are currently unable to allocate more than 64KB of

contiguous physical memory.

6. To use DMA, the driver must write directly into the 8237 DMA

controller registers, perform several memory allocations until a memory

object is allocated on the correct segment boundary and paragraph

alignment, and double-copy data if the application buffer is above the

16MB boundary5.

4 A limited number of file system APIs are available during driver initialization.
5 For this functionality we propose to provide a set of driver-callable DMA utility functions
which will perform these functions transparently.

Copyright © 1997 Steven J. Mastrianni Page 33 3/30/2005

7. Device drivers are loaded statically by references in the CONFIG.SYS

file. The drivers must be able to be loaded dynamically or “as needed”.

8. Drivers are loaded in low memory, below the 640KB boundary limiting

the size and number of device drivers that can be loaded at boot time.

To satisfy these requirements, we have made the following assumptions:

1. The file system will be rewritten to handle the proper device driver

calls. This might include a 32-bit to 16-bit thunk layer or memory

aliasing to provide a seamless interface to the 32-bit device driver. In

other words, the 32-bit device driver should be able to be installed,

configured, run, and deinstalled without being aware if the underlying

architecture is 16-bit or 32-bit.

2. The file system will be modified to accept long device names.

Currently, OS/2 supports only 8 character device names, a relic from

the old 8.3 file naming conventions.

3. The system will be modified to support a persistent data store or

registry for supported devices, either installed or uninstalled.

Copyright © 1997 Steven J. Mastrianni Page 34 3/30/2005

4. The system will correctly handle mapping or aliasing pointers passed

by 16-bit applications inside the request packet. It is the programmer’s

responsibility to handle any imbedded pointers in private data buffers

shared between the application and the device driver.

5. The system will be modified to add the DeInstall command that

removes the driver from the system, freeing up any resources owned

by the driver6.

6. OS/2 will provide a configuration utility to examine and modify the

persistent configuration store or registry to permit legacy device

settings to be stored.

7. OS/2 will be modified to allow access to the least significant bits of the

8254 timer to provide a reasonable granularity for the driver profiling

services.

8. The OS/2 system loader will be modified to load the new device driver

model. This loader should operate both at boot time and later when a

device driver is dynamically loaded. We think this effort will be a major

task.

6 This may prove to be very difficult, as the driver may be hung in a state, which can’t be
modified. In this case, rebooting may be necessary anyway.

Copyright © 1997 Steven J. Mastrianni Page 35 3/30/2005

9. Wherever possible, the new driver model shall incorporate code,

functions, subroutines, and macros from the existing 16-bit device

driver model to ease the conversion of older drivers. The conversion of

older drivers should be easy and straightforward, and if possible,

should follow the architecture of the existing 16-bit model7.

7 In some cases, this may not be possible, although a large portion of the actual source
code may be easily transportable to the new architecture.

Copyright © 1997 Steven J. Mastrianni Page 36 3/30/2005

Chapter 2. - Review of Related Literature

Requirements

During boot, the system will enumerate the system hardware to determine

the current configuration. The current configuration will be compared to

the last good configuration from the persistent store. If the information is

different, the appropriate event mechanism will be started8. If the boot

process is successful, the old configuration information should be backed

up to a file, and the new configuration should become the current

configuration. The system should always keep a known good configuration

in the event of a system crash or corruption of the configuration persistent

store. If a corrupt configuration file is encountered during boot, the user

should be given the choice of using the last known good configuration or

loading a new configuration from a file on floppy disk or hard disk. This

operation is already performed by many popular operating systems such

as Windows NT.

The device driver model will support the ability to be dynamically loaded,

configured, and removed, and the system should automatically scan the

Copyright © 1997 Steven J. Mastrianni Page 37 3/30/2005

machine to determine if any devices have been added or removed

(Shanley, 1995). The system should attempt to detect legacy devices as

well as enumerating Plug and Play devices, PCI devices, and devices on

other bus types such as Universal Serial Bus (USB). A good example of

how this is performed can be observed in Windows 95.

In addition to detecting devices and bus types at boot time, a system-

based configuration manager or “sniffer” will be periodically run. Many of

these devices support hot (power on) insertion and removal, so that

perhaps every five to ten seconds or so, the configuration manager will

attempt to determine if a new device has been inserted or an existing

device removed. If the system detects that a new device has been

installed, it looks up the configuration information for that device in the

system’s device configuration table. If the configuration information is

located, the configuration manager attempts to find and load the device

driver associated with the device, and calls the initialization section of the

device driver to perform its configuration process. If the device

configuration information is not found in the system’s configuration table,

the user is prompted to insert a diskette or path information to where the

8 This technology is nothing new. IBM made this a standard part of its Micro Channel bus
architecture some 10 years ago. The current configuration was stored in EEPROM and
compared each time the system was booted.

Copyright © 1997 Steven J. Mastrianni Page 38 3/30/2005

configuration information is located. The appropriate data is copied to the

system’s persistent store, and the configuration process begun. If the

configuration process fails, the device driver is unloaded, and any

resources claimed so far are automatically released9.

Some devices cause immediate detection events, such as the insertion or

removal of a PCMCIA card. Upon insertion of a PCMCIA card, the

configuration data is read from tuples located in the PCMCIA card and

compared with the persistent registry data (Mori, 1994). If the

configuration information for the card already exists, the system loads the

necessary driver and calls the driver’s initialization code. The initialization

code then configures the card using the configuration manager. Our

proposed model supports older 16-bit PC cards as well as 32-bit CardBus

PCI implementations (Anderson & Shanley, 1995). CardBus adapters can

allocate 32-bit flat memory in any region of the PC memory address

space.

The system registry must be able to support legacy devices whose

resources are configurable only through jumpers or switches, or via a

proprietary programming sequence (Kelsey, 1995). Some older devices

9 This may not always be possible as some resources may be locked by the system.

Copyright © 1997 Steven J. Mastrianni Page 39 3/30/2005

require the booting of a MS-DOS diskette to download software to the

adapter or configure the adapter’s resources such as interrupt level,

memory mapped address, DMA channels, or port addresses. The system

registry utility is used to examine and manually enter the resources

required by the legacy device. If the user attempts to claim a resource that

is already in use, the request is refused10. In some cases, it will be

necessary to write a “sniffer” that is specific to the particular device.

10 We expect that this function will have the capability to be overridden, as it is possible to
share resources between mutually aware device drivers.

Copyright © 1997 Steven J. Mastrianni Page 40 3/30/2005

Addressing

Wherever possible, the system should avoid thunks. In particular,

converting or thunking 32-bit addresses to 16-bit addresses are difficult to

implement because the 32-bit pointer can cross 64KB boundaries (Deitel

& Kogan, 1992). To avoid unnecessary thunks, the device driver interface

should be implemented in 32-bit code, not thunked to their 16-bit

counterpart. This will certainly cause the size of the kernel to grow, but the

increased performance should more than make up for the larger kernel

size or execution time. In a resource-constrained environment, it may be

appealing to simply insert thunks for the 32-bit APIs. While this will save

initial coding work, we believe it will have a significant impact on system

performance.

Copyright © 1997 Steven J. Mastrianni Page 41 3/30/2005

Legacy Support

Although the system should provide seamless, flat-model interfaces to

services and data structures, a few exceptions must be provided for. One

of these exceptions is the support of scatter-gather lists for those devices

that export only 24 address lines. Some SCSI adapters require that they

perform reads and writes to certain physical addresses. Because the

adapter recognizes only 24 bits of address, those physical addresses

must reside below the 16MB boundary. Another exception to the exclusive

use of 32-bit pointers is the use of Direct Memory Access, or DMA. The

DMA hardware in most systems is a holdout of the ISA bus architecture,

and is thus limited to 24 bits of address. Adapters that perform DMA reads

and writes must use data buffers that are below the 16MB boundary. If the

application is running above the 16MB boundary, the system must provide

the ability to copy the data from the buffer below the 16MB boundary to

the application’s buffer in high memory. The device driver interface should

do this transparently via a device driver service.

Current OS/2 segmented device drivers contain at least one code

segment and one data segment, and are loaded in low physical memory

(Deitel & Kogan, 1995). The new kernel must allow the new 32-bit device

drivers to be loaded anywhere in physical memory, and not restrict them

Copyright © 1997 Steven J. Mastrianni Page 42 3/30/2005

to any particular region11. In addition, the current 16-bit driver model

restricts interrupt and timer handlers to the first code segment. Our

proposal assumes that no such limitation will exist. The system should

have the maximum flexibility in choosing how to distribute interrupt

requests and should support Advanced Priority Interrupt Controller (APIC)

if present (Anderson & Shanley, 1995).

The new device driver model should support a symmetric

multiprocessor (SMP) configuration. Writing a device driver for an MP

system requires care, just as it requires care to write an application for a

multiprocessor system. Global variables should be avoided wherever

possible (IBM, 1993), and platform-specific APIs for low-level access

should be called rather than accessing the hardware directly. Although

there may be some performance gain in bypassing the published

hardware interfaces, the result will be code that runs on one particular

platform but not another. Proper operation in an MP system requires

serialized access to hardware and software resources. Manipulating

hardware directly could cause these serialization functions to be

ineffective, and introduce intermittent bugs and system failures that would

11 This has always been a limitation for OS/2 as the amount of low physical memory is
fixed. Loading several large drivers could cause low memory to be exhausted, prohibiting
new drivers from being loaded.

Copyright © 1997 Steven J. Mastrianni Page 43 3/30/2005

be nearly impossible to locate. Race conditions are normal in an MP

system. A thread blocked on one processor can be restarted on another

processor or swapped out to disk at the system’s discretion. Failing to

adhere to the correct procedures could cause the system to become

unstable and ultimately fail. All functions and subroutines for the new

driver model shall be made MP safe.

Extreme care must be exercised when using global variables. Since

device driver operations usually happen asynchronously, a condition might

occur where two routines or functions attempt to access the global

variable at the same time. Normally, global variables accessed by an

application are protected by some type of semaphore mechanism to

prevent this from happening. However, the device driver operates in

kernel mode of the processor, and the semaphore functions are not

available in kernel mode. One reason for this is that the OS/2 driver, while

in kernel mode, is interruptible but not preemptible. While the OS/2 device

driver is running it can be interrupted by an external device interrupt but it

can not be suspended in favor of another higher priority device driver. This

means that while the OS/2 device driver is executing, no other system

service or program can be running.

Copyright © 1997 Steven J. Mastrianni Page 44 3/30/2005

The use of global variables becomes even more critical when the device

driver is operating in a system with multiple processors. If a device driver

becomes blocked on one processor, it can be restarted on another

processor when a particular event occurs. OS/2 solves this by reflecting all

interrupts to CPU0, while Windows NT uses a ring-0 semaphore

mechanism called a spin-lock. Our proposal suggests a design where the

device driver uses an object-oriented strategy by eliminating most global

variables and encapsulating the variables inside functions. Real

encapsulation is not possible at the driver level since we do not actually

create an object in the traditional sense, but the function will access global

variables that only the particular function is aware of. Since only one

thread of the driver code can be executing at a time, this method provides

serialized access to those variables. We believe that by adopting this

strategy, all device drivers will be inherently MP-safe, providing they follow

all the other guidelines for safe MP operation.

Copyright © 1997 Steven J. Mastrianni Page 45 3/30/2005

Chapter 3. - Methodology

Approach

Our approach involved the conversion of three specific device drivers from

16-bit to 32-bit. We felt that this was the best method, as we would have

an existing model against which to verify our results and benchmark

performance. Complete program listings of the three device drivers before

and after conversion can be found in Appendix A.

Copyright © 1997 Steven J. Mastrianni Page 46 3/30/2005

Method and Database of Study

To validate our proposed design, we converted three existing 16-bit device

drivers to the new 32-bit design. Because our design requires several

other changes to the OS/2 kernel that may not be finished at the time we

will be ready to begin testing, we were forced to simulate some operations

in software. We built a software simulator that calls the device driver

functions and executes as much code as possible. To monitor execution

time, we took a snapshot of the millisecond timer upon entry into the

device driver and another snapshot when exiting. While we could not test

every execution path, this data did give us a general idea of execution

time. While this was certainly not an optimal solution, it was possible to

test the basic architecture of our design and compare some results with

older 16-bit device drivers.

Copyright © 1997 Steven J. Mastrianni Page 47 3/30/2005

Validity of Data

Since we used three actual device drivers for our conversion, we believe

the data contained herein to be valid, at least for these three cases. Since

many components were not finished or installed at the time of our study, it

was impossible to guarantee that we had uncovered all of the problems

associated with the conversion. We have attempted to point out these

unknown issues throughout this document, and have summarized them in

Chapter 5.

Originality and Limitations of Data

Since the concept outlined in this document has never been attempted,

data associated with the proposal has never been collected. While some

general concepts, such as decreased performance and larger executable

size are generally known and accepted, the actual application of those

concepts in our proposal has not been previously documented.

It would have been easy to start with an entirely new device driver model,

but this would render existing device drivers useless. The challenge is to

provide an enhanced architecture while still maintaining backward

compatibility with the hundreds of current OS/2 device drivers. This

proposal suggests an architecture for the OS/2 base device driver model

Copyright © 1997 Steven J. Mastrianni Page 48 3/30/2005

only. OS/2 uses several other types of device drivers, but most have

already been converted to 32-bit models so they are not covered here.

Summary

The object file format of the device driver is the same as a DLL, so we

loaded the device driver as a DLL for testing purposes. It was impossible

to test real timer or device interrupts, since interrupts are only available in

ring 0 and the DLL loads at ring 2. The simulator made calls to the timer

and interrupt handlers to test their correct operation.

We encountered several problems and oversights with our initial design

during the preliminary testing process. Some of these problems caused us

to revise our design, and others required further system changes.

One concern that had been expressed to us is the fear that our design

would cause the size of the installed imaged to grow very large. Indeed,

our past experience had shown that converting 16-bit code to 32-bit code

resulted in large increases in executable code size, sometimes in excess

of 100 percent. We took no extra steps to optimize the executable size by

changing the way we wrote the code to insure the comparisons with the

16-bit executables were valid.

Copyright © 1997 Steven J. Mastrianni Page 49 3/30/2005

During our testing, we noted the size increases for our new drivers and

support software. They are discussed in detail later in Chapter 5.

Existing 16-bit device drivers primarily use 16-bit selectors and 16-bit

offsets to form 32-bit addresses. Address and pointer conversions in 16-bit

mode are very fast, especially when the memory range is equal to or less

than 64KB. We expected that direct addressing using 32-bit pointers

would be faster, especially since we could utilize the native block moves in

the Intel processor. Our results are summarized in Chapter 5.

Drivers frequently create 32-bit alias pointers which point to other areas in

memory, such as user buffers or memory-mapped areas of a device. The

driver calls a system function to map a 16 or 32-bit physical address to a

virtual or user virtual address. During this conversion, the system allocates

a 32-bit selector from the pool of 32-bit selectors. Since OS/2 was

designed to handle both 16-bit applications and 32-bit applications, we

were unsure if the current pool of selectors available for allocation would

be large enough, or contained enough 32-bit selectors to accommodate

our new design. We wrote some test code to determine the number of

selectors necessary.

Copyright © 1997 Steven J. Mastrianni Page 50 3/30/2005

In OS/2, application programs do not call device drivers directly. Instead,

they call a system API that in turn calls the device driver through an

established interface. This interface performs initial parameter validation

and provides the ring transition from user mode to kernel mode and back.

The communication medium between the APIs and the device driver is

called the Request Packet. The request packet contains the operation

code and parameters associated with the request such as pointers and

data. OS/2 allocates a limited number of request packets, based on the

available memory in the system heap space, so we were unsure that that

OS/2 was allocating enough space for the packets. We later concluded

that the system should provide up to 512 16-bit packets and 512 32-bit

packets to insure that enough packets were available for even the largest

number of devices.

In OS/2, the device header structure contains pointers to functions located

in the device driver. It is a static structure created at compile and link time,

and provides entry points for the initialization and strategy sections of the

device driver. In the current implementation of OS/2, these pointers are

kept only as 16-bit offsets since the driver model is 16-bit. With a flat

model, these pointers will become 32-bit flat addresses. Programs or

Copyright © 1997 Steven J. Mastrianni Page 51 3/30/2005

system components that need to call the device driver functions do so by

locating the address of those functions from the driver’s header

information. These system components need to be changed to refer to the

address values correctly. We will insert a special bit in the device header

to indicate the driver is a new flat model driver, and that addresses should

be assumed to be linear.

The request packet contains pointers to buffers and data items that are

located in the application program address space. Even though the driver

is a 32-bit implementation, it is possible that the application that needs to

access the device driver is still 16-bit. The system and device driver will

allow these programs to be used by transparently handling any address

conversions or address mapping.

Copyright © 1997 Steven J. Mastrianni Page 52 3/30/2005

Chapter 4. - Analysis of the Problem

How We Tested

For our first conversion from the 16-bit model to the new flat model, we

decided to start with a simple device driver that is used to access the

parallel port called MMAP.C (see Appendix A – Listings). Programmers

have frequently used this public domain device driver as a basis for

learning how to write OS/2 device drivers12.

The device driver contains the two main sections of an OS/2 device driver,

the Initialization section, and the Strategy section. In order to keep the

device driver simple; the driver does not contain an interrupt handler or

timer handler (See Appendix – Listings).

We began by identifying the variables that needed to be converted to

accommodate our new model. Before modifying the driver variables, we

decided to start with the local header files (see Appendix A - Listings) that

are included by the device driver.

12 Most OS/2 base device drivers are written in C, which made the conversion process
mush easier than if the driver had been written in assembly language.

Copyright © 1997 Steven J. Mastrianni Page 53 3/30/2005

While operating in the 16-bit mode, the instruction set of the Intel

processor allows two distinct types of addresses. To access data or

instructions within a particular 64KB segment, a program can use near

addressing. Near addressing assumes that the code or data being

accessed resides in the same segment that is currently selected. Since

the same segment is used, the only portion of the address that needs to

change is the 16-bit offset.

Far addressing allows access to code or data anywhere within the 16MB

memory area. In far addressing, the pointer contains a segment as well as

an offset. Like near addressing, the offset portion specifies an address

within a 64KB segment.

A 32-bit flat model program makes no distinction in addressing modes. All

pointers and addresses are 32 bits long, and are referred to as linear

addresses. In fact, the 32-bit C and C++ compilers do not allow the use of

the common 16-bit modifiers near and far, so we began by deleting all of

the near and far modifiers in the header files. For purposes of readability,

Copyright © 1997 Steven J. Mastrianni Page 54 3/30/2005

we also deleted any references to the data type FARPOINTER, including

any instances where FARPOINTER was used in function prototypes13.

Header File Conversion

To avoid unnecessary duplication of 32-bit data types, we began by

changing all of the unsigned short variables in the structure definitions to

standard 32-bit data types defined in the 32-bit compiler’s header files.

Variables that contain pointer data types are automatically expanded to

32-bits by the compiler when the compiler-defined pointer data type is

used in the declaration. We also made sure that any variables that were

not defined as pointers but that might hold a pointer temporarily were

converted to 32-bit variables (see Appendix A - Listings).

We then converted any variables defined as BYTE or unsigned character

to 16-bit. The reason we did this is that the compiler will attempt to

optimize the storage of data structures by packing bytes together in

adjacent memory locations. The data in the variables is sometimes

passed by reference to another device driver or application. That is, the

driver may send a pointer to the data structure to another device driver or

application. The receiving driver or application may attempt to de-

13 Addressing in OS/2 device drivers has been one of the most difficult tasks to

Copyright © 1997 Steven J. Mastrianni Page 55 3/30/2005

reference the pointer using a 16 or 32-bit pointer type, so the data must be

word-aligned. Although we knew that memory requirements would be

increased because of the larger data types, we felt that it was better to

increase the memory size than to spend time debugging misaligned data

structures. Unfortunately, we had to reverse this operation because we

could not be sure that the system-level variables defined by these fields

would be changed.

We then changed the system library function prototypes from NEAR

PASCAL to PASCAL. The PASCAL parameter passing method is much

easier to implement because a fixed number of parameters must be

passed and the caller does not have to worry about cleaning up the stack.

This makes even more sense because the device driver does not own the

stack; therefore the device driver cannot manipulate the stack or stack

pointer.

Driver Code Conversion

When we finished converting all of the header files, we began converting

the variables in the device driver. OS/2 device drivers usually contain two

types of variables, global and local. Global variables exist outside the C

understand and implement because of the various modes of addressing.

Copyright © 1997 Steven J. Mastrianni Page 56 3/30/2005

source code, and can be accessed by any function or subroutine in the

device driver. Local variables are variables created within a particular

function. Local variables are stored on the stack. We converted all of the

pointers to the correct type, and then began changing some of the driver’s

internal structures. Whenever we encountered a structure with a built-in

pointer, we changed that pointer to a standard 32-bit pointer type. We also

changed an important part of the device driver, the device header. This

structure defines the name of the driver, the type of device the driver

supports, its capabilities, and pointers to major sections of internal device

driver code. This has been a source of problems with the 16-bit device

driver model. In the 16-bit design, the device header contains 16-bit offset

pointers to the Initialization and Strategy sections of the device driver. The

Initialization entry point is called when the device driver is loaded and the

Strategy section is called for every other command sent to the driver.

Because those pointers were only 16-bit pointers, the largest driver that

could be written had to fit within a 64K-code segment. There was a

workaround, though, by having the header point to an entry point in the

first 64K segment. The first segment would then jump to a second code

segment. Implementing this was quite tricky and resulted in some ugly

Copyright © 1997 Steven J. Mastrianni Page 57 3/30/2005

code. Making these pointers 32-bit allows the driver to install an interrupt

or timer handler anywhere in physical memory14.

This is important because OS/2 loads all 16-bit device drivers in low

memory (less than 1MB). This memory is a precious commodity, and it’s

easy to run out of space with several large multi-segment device drivers.

Allowing the driver to be located anywhere in memory releases it from

many historical limitations and helps free up lower memory. This means a

major change to the system memory allocation routines, however, since

the areas where device drivers are loaded must be permanently locked in

memory and must be arranged as to prevent fragmentation. As part of

our rewrite, we have specified that the OS/2 kernel must perform a post-

boot compaction of device drivers as to avoid fragmentation. We also

specified that the driver contains a special bit to override compaction.

Another limitation that we addressed was the entry points for timer and

interrupt handler routines. When a device driver needs to install an

interrupt or timer handler, it calls a system function, passing the entry point

of the interrupt or timer handler code. Because these pointers were 16-bit,

the timer and interrupt handlers had to reside in the first code segment so

14 16-bit drivers may continue to be loaded in low memory for backward compatibility.

Copyright © 1997 Steven J. Mastrianni Page 58 3/30/2005

the handler could be reached with a 16-bit pointer. Once in the interrupt

handler, the handler code could call or jump into another segment, but this

was also difficult to implement. Crossing segment boundaries is time

consuming because the cache becomes invalidated and has to be

reloaded each time a 64K boundary is crossed.

Driver Loading

For this rewrite, we have specified that OS/2 device drivers can be loaded

after the system is booted and running. This requires a large change in the

system loader and support code, but we feel this will be made easier by

allowing the device drivers to be loaded anywhere in memory. When

loading device drivers, the system keeps a list of installed device drivers in

a chain of pointers. The chain pointer is initialized to the address of the

first device driver’s header. Each subsequent device driver header

contains the address of the next device driver in the chain. The 16-bit

device driver header uses an unsigned long (ULONG) for this pointer, so

the system should be able to chain 16-bit and 32-bit device drivers without

any extra logic in the chaining algorithm.

When the driver is opened, the system will check a specific bit in the

device driver’s header that identifies the driver as a new 32-bit driver.

Copyright © 1997 Steven J. Mastrianni Page 59 3/30/2005

Once the determination has been made, the system can selectively send

request packets that are formatted correctly for the model. A READ

request packet, for example, contains the address of a data buffer in

program space where data is to be stored. For the 16-bit model, those

pointers will be passed as 16:16, for the 32-bit model, the pointers will be

passed as linear addresses. The system will handle thunking 32-bit

pointers to 16-bit, and 16-bit to 32-bit. By using this transparent thunking,

current 16-bit drivers will continue to work normally while allowing the new

32-bit model to be supported. This is also important because OS/2

supports both 16-bit applications and 32-bit applications at the same time.

It is possible, for example, for a 16-bit application to call a 32-bit driver, or

a 32-bit application to call a 16-bit driver. Existing applications should

continue to run unchanged, and to be able to utilize the new device driver

model without a recompile15.

15 Thunking is time-consuming and should be avoided whenever possible.

Copyright © 1997 Steven J. Mastrianni Page 60 3/30/2005

Resource Allocation

Device drivers allocate and use system hardware and software resources

to perform operations. If the device uses DMA to transfer data, the device

driver must reserve (or have available) a DMA channel it can use when it

needs to transfer data. If the device uses interrupts, the driver must

reserve that interrupt so it can handle the interrupt from the device. If the

driver waited until the last possible moment to see if the resource was

available, it would fail if a program tried to use the device and the resource

was not available. This might be satisfactory for a printer, but not for a

cardiac monitor or bank teller machine.

Driver Information File

The device driver determines the acceptable hardware configuration by

referring to a driver information file, or DIF (see Figure 4.1. - Sample DIF

File.

Copyright © 1997 Steven J. Mastrianni Page 61 3/30/2005

; name of the driver
[DriverName]
Sample$
; file name and location
[DriverLocation]
c:\os2\drivers\sampledd.sys
; locator program
[Locator]
c:\os2\locator\samploc.exe
; ASCII description
[Description]
Sample base device driver
; 16 for 16-bit model, 32 for flat model
[DriverModel]
32
; free form ASCII text
[Company]
Our Company, Inc.
; version number nn.nn
[Version]
1.00
; hardware bus type and number
[Bus]
PCI:0 PCI:1
; interrupt levels IRQ:sharing (E=exclusive, S=shared)
[Interrupts]
5::E 7::E 9::E 11::E
; memory map (hex) address:length
[MemoryAddress]
c0000::1000 cc000::1000 d4000::1000 d8000::1000 dc000::1000
; dma channels
[DMA]
; ports (hex) address:length
[Ports]
300::16 280::16 220::16 200::16 260::16
; if adapter needs code downloaded to it
[Download]
c:\os2\drivers\init.cod::E0000
; specify driver power management support
[PowerManagement]
APM1.0
[ROM]
C8000

Figure 4.1. Sample DIF File

Using the information in the DIF file and the current configuration of the

hardware, the driver registers for the resources it requires by calling the

system’s Resource Manager. The resource manager keeps track of the

allocation and use of system resources. When a driver requests a

resource, it calls the Resource Manager to request the use of that

resource. The Resource Manager returns the status of that resource as

Copyright © 1997 Steven J. Mastrianni Page 62 3/30/2005

AVAILABLE, NOT_AVAILABLE, or AVAILABLE_SHARED. Based on this

information, the driver can determine what action to take. If the resource is

available and the driver must absolutely have the resource, the driver calls

the Resource Manager to reserve that resource exclusively. In some

cases, the driver might allow sharing of that resource, but this is usually

only safely done if the other driver or drivers sharing the resource are also

aware that it will be shared. The driver uses the DIF file for a list of valid

resources that the hardware supports. The DIF file also contains a list of

substitute resources should the desired resource be unavailable. For

instance, a particular device might request interrupt 5, but might also be

able to use IRQ 4, IRQ 3, or IRQ 11. The DIF file contains a list of these

resources in a hierarchy of desired resource allocation (see Figure 4.2).

[Interrupts]
5 4 3 11

Figure 4.2. DIF File Interrupt Entry

If the first resource in the category is unavailable, the driver will query the

resource manager using the next supported resource until the request has

been satisfied or all of the supported resources have been tried. The

resources are organized in a hierarchical fashion, specifying the most

Copyright © 1997 Steven J. Mastrianni Page 63 3/30/2005

optimal settings first followed by the least optimal. Using this method, the

driver can determine the best configuration based on its intimate

knowledge of the device. For instance, while configuring an interrupt, the

driver could decide that based on the priority of the interrupt level it is

granted, that the DMA channel should be an 8 bit DMA channel instead of

a 16-bit DMA channel. The driver can make that decision based on its

detailed knowledge of the device.

After the driver has been loaded, the user can change the values of these

parameters using the Configuration Manager application. This application

displays the current configuration and settings for all devices, and

wherever possible, allows these settings to be changed. Settings that

cannot be changed are displayed in a lighter color to indicate that they

cannot be adjusted manually.

To make this concept work, existing 16-bit drivers should also include a

DIF file and the associated code to request resources. It is not an absolute

requirement, however.

Copyright © 1997 Steven J. Mastrianni Page 64 3/30/2005

Recovery

Each time the Configuration Manager is run, or a driver installed or

changed, the current configuration is backed up to a file in case the

current configuration causes the system to become unbootable or

unstable. Each backup file is created with a different name using the

current time and date. For example, a configuration file saved on October

23, 1996 would be called something like C102396.DAT and stored in the

Configuration Manager’s default directory.

When the system is rebooted, a menu will appear for 10 seconds that will

allow the user to reboot using a different configuration than the current

configuration. If the user selects this option, a menu of the current saved

configurations is listed. The user highlights the desired configuration and

continues the boot progress. If the boot process succeeds, the system will

ask the user if the new configuration should replace the existing

configuration. This will allow the user to boot the system with several

experimental configurations without losing the last saved good

configuration. The system always keeps a copy of the original

configuration used when the operating system was installed to allow a

Copyright © 1997 Steven J. Mastrianni Page 65 3/30/2005

default configuration to be used in the event that the system is rendered

unbootable.

Device Locator

Each device driver must supply a device locator program that verifies the

presence of the particular device and verifies its configuration. The

configuration manager uses this program to detect if the device is present,

and to locate the device driver in the event that it needs to install the

device driver. The locator program name and path are located in the

driver’s DIF file.

Copyright © 1997 Steven J. Mastrianni Page 66 3/30/2005

Configuration Manager

The OS/2 configuration manager should run every ten to fifteen seconds

to detect the installation of new hardware devices. It queries the current

configuration and compares it against the last stored configuration to see if

any hardware has been added. To determine the current configuration, the

configuration manager runs a list of locators. A locator is a program written

by the device driver writer that queries the particular device to see if it is

present. In addition to running every 10 seconds, the configuration

manager will also be run if it detects a PCMCIA card insertion event.

During system boot, one of the first drivers that are loaded is the

configuration manager itself. At that time, the configuration manager driver

signs up to receive power management and PCMCIA events. If a PCMCIA

card is inserted or removed, the configuration manager is called to

determine the new configuration.

Copyright © 1997 Steven J. Mastrianni Page 67 3/30/2005

The configuration manager will allow the user to enter settings for device

drivers and hardware that do not participate in the new configuration

architecture. Existing 16-bit device drivers may elect to supply a DIF file

and the code to arbitrate resources with the configuration manager. For

those drivers that can’t be modified, the configuration manager program

will supply a manual input to allow resources for legacy devices and

drivers to be reserved. If, for example, a certain device has a non-movable

port address of 0x300, the user can reserve that port address using the

resource manager.

Dynamic Loading

If the configuration manager detects that a new device has been installed,

it looks in the \OS2\DRIVERS directory for a DIF file that matches the

device. If it finds the DIF file, it calls the system device driver loader to

load the device driver. If the device driver is loaded successfully, the

locator associated with that device driver is added to the list of installed

locators. The next time the configuration manager runs, the locator

associated with that device will find the device already present.

If the correct DIF file cannot be found, the system will ask the user to enter

a floppy disk that contains the DIF file and driver associated with the

Copyright © 1997 Steven J. Mastrianni Page 68 3/30/2005

device. The system copies that DIF file and driver to the system’s hard

disk, and restarts the configuration process. In some cases, such as drive

letter reassignment, rebooting the system may be required.

Dynamic Driver Binding

In current versions of OS/2, the device driver code uses static linking. Run

time libraries, supplied by IBM and other vendors are linked with the

device driver at build time and become part of the driver executable code.

Because these driver libraries were created by different companies, the

names of the functions are different, as well as the number and name of

the function parameters. We plan to solve this problem by supplying a 32-

bit standard driver run time library that is dynamically linked at driver

load time. The driver links with the import library of the run time DLL just

like a normal application links with a DLL’s import library. The difference is

that the driver gets its own copy of the run time library which becomes

statically linked at driver load time, not at build time, resulting in much

smaller driver executables. The driver library has the look and feel of a

standard DLL, but a separate instance of the DLL is created for each

driver. Unlike traditional DLLs, this DLL-like entity can be loaded at boot

time and while the system is operating at ring 0. Updated library DLLs can

be shipped via the normal update channels. This DLL could have been

Copyright © 1997 Steven J. Mastrianni Page 69 3/30/2005

shipped as a standard library (LIB) file, but by using a DLL format, we can

include debug symbol information and allow the library to be run and

tested at ring 3. We can also insure that the current shipping library DLL is

compatible with the current build of the operating system, and that the

library is MP safe.

Debugger Modifications

One of the problems in developing OS/2 device drivers is the lack of good

debugging tools. The current debugger is actually a replacement OS/2

kernel. It is loaded in place of the standard OS/2 kernel file, OS2KRNL. It

provides support for debug information to be displayed and input from a

standard terminal on a serial COM port. The current debugger is barely

adequate, and does not support the display and modification of data

structures. Commands and functions are cryptic and difficult to

understand. We don’t feel, however, that the base command set should be

changed. In spite of its weaknesses, developers have learned to use the

debugger successfully, and we don’t want them to learn yet another

command set. Since the debugger can already display and modify 32-bit

values, it should be able to be used “as is” with few actual modifications.

Copyright © 1997 Steven J. Mastrianni Page 70 3/30/2005

Chapter 5. - Summary and Conclusions

Conclusions

It is worth reiterating here that the purpose of this effort was to flatten the

existing base device driver model for OS/2. It would have been much

easier to start from scratch with a brand new architecture and to ignore the

support for the 16-bit model, but this was not an option.

Since the drivers we used were written in C, the conversion process was

much easier than we expected. All three drivers were converted with no

major problems. The C header file conversion was also easy. The first

step was to get the drivers to compile and link successfully using a 32-bit

compiler. For the compiler, we selected IBM’s Visual Age C++ compiler for

OS/2. Using a compiler that is supplied by IBM makes the most sense

since IBM also supplies the OS/2 operating system. We did not convert or

use any assembly language stubs or programs because we did not want

to supply a model that used them. Today’s C and C++ compilers do a

great job at optimization, and any small performance gains realized by

writing in assembler are insignificant compared to the software

maintenance and support costs associated with assembler programming.

Copyright © 1997 Steven J. Mastrianni Page 71 3/30/2005

Recommended Steps

During the conversion process, we identified several steps that were

necessary for the conversion of existing device drivers, and have arranged

those steps above in Chapter 4, in their suggested order of

implementation. This list is not complete because it only reflects the

structure and coding techniques of the drivers we converted. Other drivers

may use different coding techniques, library calls, or private data types, so

the list should be used only as a general guideline when converting

existing drivers.

Size

We were concerned that converting the drivers from 16-bit to 32-bit would

cause an increase in size. Indeed, as we expected, the executable size of

the drivers increased by an average of 30% or more, in one case the size

increased 40%. However, given the choice of having no drivers or drivers

that are larger, the choice is obvious.

Necessary Changes to OS/2

During the conversion process, we identified several major changes that

must be implemented in the OS/2 kernel and file system to allow our new

drivers to operate.

Copyright © 1997 Steven J. Mastrianni Page 72 3/30/2005

• All devices are accessed via the OS/2 file system. The file system is

the operating system’s interface to all devices and I/O. The current file

system implementation is 16-bit. The file system must be modified to

support 32-bit device drivers and their associated data. This means

that the file system must support 32-bit pointers. The challenge here is

that the file system should continue to support existing devices and

device drivers while adding support for 32-bit drivers and devices.

Request packets that are sent to a 16-bit device driver should have the

appropriate 16-bit pointers, while request packets that are sent to 32-

bit drivers should use 32-bit pointers. We recommend that the number

of request packets allocated by the system be doubled to 512 16-bit

packets and 512 32-bit packets. Since the system supplies the driver’s

stack, the stack pointers should be adjusted according to the driver

model. Any system functions that are available to the device driver

should have 16-bit and 32-bit entry points, allowing both models to

coexist. For example, a call to set the entry point of the driver’s

interrupt or timer handler should accept a segment:offset for a 16-bit

driver and a 0:32 flat address for a 32-bit device driver. The driver must

maintain the ability to handle pointer conversions on behalf of 16-bit

applications. It may be, in fact, easier to flatten the file system

Copyright © 1997 Steven J. Mastrianni Page 73 3/30/2005

completely and then add back in the support for 16-bit applications and

device drivers. This would have the theoretical effect of enhancing

OS/2’s support for large files and disk volumes, as well as faster file

caching and buffering. The new file system must support long file

names and large files16.

• The OS/2 device driver loader must be modified to allow 16-bit and 32-

bit device drivers to be loaded. 32-bit drivers can be loaded anywhere

in memory, while 16-bit drivers will continue to be loaded in low

memory17. The loader should not use the CONFIG.SYS file for loading

device drivers, but should use the current configuration file to build a

device tree while the system is booting up. The loader should support

Dynamic Binding to allow the driver to be bound to an instance of the

driver support library at load time.

• OS/2 must be modified to support file ring 0 file I/O services. This

functionality is also required for the configuration manager to store the

system configuration information.

16 OS/2 currently supports files no larger than 2GB.
17 We assume low memory to mean the area of physical memory below the 1MB
boundary.

Copyright © 1997 Steven J. Mastrianni Page 74 3/30/2005

• OS/2 must be modified to use the lower bits of the 8254 Counter-Timer

to provide better granularity for system timer ticks and device driver

profiling.

• OS/2 must supply a standard set of driver library functions that operate

at ring 0 as well as ring 3. These libraries should export both 16-bit and

32-bit functions, and should be able to allocate and de-allocate

memory using 32-bit linear addresses. These library routines must be

MP safe and use the PASCAL calling convention.

• The system should be modified to supply what we call “auto thunking”.

Auto thunking makes all the conversions from 16-bit pointers and

stacks to 32-bit, and the reverse. A 16-bit device driver should always

receive 16-bit pointers, while a 32-bit driver will always receive 32-bit

pointers18.

• OS/2 must supply a GUI-based configuration utility capable of

displaying and editing the configuration file.

18 Pointers which are passed inside private data structures are not automatically
converted.

Copyright © 1997 Steven J. Mastrianni Page 75 3/30/2005

• A development kit must be supplied that contains accurate

documentation on how to convert 16-bit device drivers, as well as the

appropriate header files, make files, debugging kernel, and library

support software.

Conclusions

It is our assessment that although this model will work, the device driver

conversion effort is minimal when compared with the effort necessary to

modify OS/2 to accommodate the new design. The biggest problem is that

the underlying file system is still 16-bit, and flattening the file system is not

a trivial task. We estimate that the file system alone could take one man-

year or more of effort, and a lengthy additional period of integration testing

with many different drivers and system configurations.

Copyright © 1997 Steven J. Mastrianni Page 76 3/30/2005

Bibliography

Anderson, Don (1995). CardBus System Architecture. New York:

Mindshare.

Anderson, Don, and Shanley, Tom. (1993). Pentium Processor System

Architecture. Texas: MindShare, Inc.

Deitel, Harvey M., and Kogan, Michael S. (1992). The Design of OS/2.

New York: Addison-Wesley.

Hazzah, Karen. (1995). Writing Windows VxDs and Device Drivers.

Kansas: R&D Publications.

IBM Corporation, (1993). Device Drivers for OS/2 SMP: A Brief Overview.

Florida: IBM Corporation.

IBM Corporation. (1993). OS/2 for SMP V2.11 Reference. Florida: Author.

IBM Corporation. (1996). Visual Age C++ for OS/2 Version 1.0 Class

Library Reference. Ontario, Canada: Author.

Kelsey, James. (1995). Programming Plug and Play. Indiana: Sams.

Leong, Kevin, Law, William, Love, Robert, Tsuji, Hiroshi, and Olson,

Bruce. (1995). The OS/2 C++ Class Library. New York: John Wiley
and Sons.

Mastrianni, Steven J. (1993). Writing OS/2 Device Drivers in C. New

York: Van Nostrand Reinhold.

Mori, Michael T. (1994). The PCMCIA Developer’s Guide. California:

Sycard Technology.

Shanley, Tom. (1995). Plug and Play System Architecture. New York:

Mindshare.

Shanley, Tom, and Anderson, Don. (1995). PCI System Architecture. New

York: Addison Wesley.

Copyright © 1997 Steven J. Mastrianni Page 77 3/30/2005

Stroustrup, Bjarne. (1993). The C++ Programming Language, New York:

Addison Wesley.

Tanenbaum, Andrew S., and Woodhull, Albert S. (1997). Operating

Systems, 2nd Edition. New Jersey: Simon and Schuster.

Thielen, David, and Woodruff, Bryan. (1994). Writing Windows Virtual

Device Drivers, New York: Addison-Wesley.

Copyright © 1997 Steven J. Mastrianni Page 78 3/30/2005

Appendix A – Listings

// sample 8255 parallel port device driver for OS/2

#include "drvlib.h"
#include "digio.h"

extern void STRATEGY(); /* name of strat rout. in drvstart*/
extern void TIMER_HANDLER(); /* timer handler in drvstart */

DEVICEHDR devhdr = {
 (void far *) 0xFFFFFFFF, /* link */
 (DAW_CHR | DAW_OPN | DAW_LEVEL1),/* attribute word */
 (OFF) STRATEGY, /* &strategy */
 (OFF) 0, /* &IDC routine */
 "DIGIO$ " /* name/#units */
};

FPFUNCTION DevHlp=0; /* pointer to DevHlp entry point */
UCHAR opencount = 0; /* keeps track of open's */
USHORT savepid=0; /* save thread pid */
LHANDLE lock_seg_han; /* handle for locking appl. seg */
PHYSADDR appl_buffer=0; /* address of caller's buffer */
ERRCODE err=0; /* error return */
ULONG ReadID=0L; /* current read pointer */
USHORT num_rupts=0; /* count of interrupts */
USHORT temp_char; /* temp character for in-out */
void far *ptr; /* temp far pointer */
FARPOINTER appl_ptr=0; /* pointer to application buffer */
char input_char,output_char; /* temp character storage */
char input_mask; /* mask for input byte */

/* messages */

char CrLf[]= "\r\n";
char InitMessage1[] = " 8 bit Digital I/O ";
char InitMessage2[] = " driver installed\r\n";
char FailMessage[] = " driver failed to install.\r\n";

/* common entry point for calls to Strategy routines */

int main(PREQPACKET rp)
{
 void far *ptr;
 PLINFOSEG liptr; /* pointer to global info seg */
 int i;

 switch(rp->RPcommand)
 {
 case RPINIT: /* 0x00 */
 /* init called by kernel in protected mode */
 return Init(rp);

 case RPREAD: /* 0x04 */
 rp->s.ReadWrite.count = 0; /* in case we fail */
 input_char = inp(DIGIO_INPUT);/* get data */
 if (PhysToVirt((ULONG) rp->s.ReadWrite.buffer,
 1,0,&appl_ptr))
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);
 if (MoveBytes((FARPOINTER)&input_char,appl_ptr,1))
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);
 rp->s.ReadWrite.count = 1; /* one byte read */
 return (RPDONE);

 case RPWRITE: /* 0x08 */
 rp->s.ReadWrite.count = 0;
 if (PhysToVirt((ULONG) rp->s.ReadWrite.buffer,

Copyright © 1997 Steven J. Mastrianni Page 79 3/30/2005

 1,0,&appl_ptr))
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);
 if (MoveBytes(appl_ptr,(FARPOINTER)&output_char,1))
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);
 outp (DIGIO_OUTPUT,output_char); /* send byte */
 rp->s.ReadWrite.count = 1; /* one byte written */
 return (RPDONE);

 case RPOPEN: /* 0x0d open driver */
 /* get current process id */
 if (GetDOSVar(2,&ptr))
 return (RPDONE | RPERR | ERROR_BAD_COMMAND);
 /* get process info */
 liptr = *((PLINFOSEG far *) ptr);
 /* if this device never opened, can be opened by anyone*/
 if (opencount == 0) /* first time this dev opened */
 {
 opencount=1; /* bump open counter */
 savepid = liptr->pidCurrent; /* save current PID */
 }
 else
 {
 if (savepid != liptr->pidCurrent) /* another proc */
 return (RPDONE | RPERR | ERROR_NOT_READY);/*err*/
 ++opencount; /* bump counter, same pid */
 }
 return (RPDONE);

 case RPCLOSE: /* 0x0e DosClose,ctl-C, kill*/
 /* get process info of caller */
 if (GetDOSVar(2,&ptr))
 return (RPDONE | RPERR | ERROR_BAD_COMMAND);
 /* get process info from os/2 */
 liptr= *((PLINFOSEG far *) ptr); /* ptr to linfoseg */
 /*
 make sure that process attempting to close this device
 is the one that originally opened it and the device was
 open in the first place.
 */
 if (savepid != liptr->pidCurrent || opencount == 0)
 return (RPDONE | RPERR | ERROR_BAD_COMMAND);
 --opencount; /* close counts down open cntr*/
 return (RPDONE); /* return 'done' status */

 case RPIOCTL: /* 0x10 */
 /*
 The function code in an IOCtl packet has the high bit set
 for the DIGIO$ board. We return all others with the done
 bit set so we don't have to handle things like the 5-48
 code page IOCtl
 */
 if (rp->s.IOCtl.category != DIGIO_CAT)/* other IOCtls */
 return (RPDONE | RPERR | ERROR_BAD_COMMAND);

 switch (rp->s.IOCtl.function)
 {
 case 0x01: /* write byte to digio port */
 /* verify caller owns this buffer area */
 if(VerifyAccess(
 SELECTOROF(rp->s.IOCtl.parameters), /* selector */
 OFFSETOF(rp->s.IOCtl.parameters), /* offset */
 1, /* 1 byte */
 0)) /* read only */
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);
 if(MoveBytes(rp->s.IOCtl.parameters,
 (FARPOINTER)&output_char,1))
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);
 outp(DIGIO_OUTPUT,output_char); /*send to digio*/
 return (RPDONE);

 case 0x02: /* read byte w/wait from port */
 /* verify caller owns this buffer area */

Copyright © 1997 Steven J. Mastrianni Page 80 3/30/2005

 if(VerifyAccess(
 SELECTOROF(rp->s.IOCtl.buffer), /* selector */
 OFFSETOF(rp->s.IOCtl.buffer), /* offset */
 1, /* 1 bytes) */
 0)) /* read only */
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);
 /* lock the segment down temp */
 if(LockSeg(
 SELECTOROF(rp->s.IOCtl.buffer), /* selector */
 1, /* lock forever */
 0, /* wait for seg loc*/
 (PLHANDLE) &lock_seg_han)) /* handle returned */
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);
 if(MoveBytes(rp->s.IOCtl.parameters,
 (FARPOINTER)&input_mask,1))
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);
 /* wait for switch to be pressed */
 ReadID = (ULONG)rp; /* block ID */
 if (Block(ReadID,-1L,0,&err))
 if (err == 2)
 return(RPDONE | RPERR
 | ERROR_CHAR_CALL_INTERRUPTED);

 /* move data to users buffer */
 if(MoveBytes((FARPOINTER)&input_char,
 rp->s.IOCtl.buffer,1))
 return(RPDONE | RPERR | ERROR_GEN_FAILURE);
 /* unlock segment */
 if(UnLockSeg(lock_seg_han))
 return(RPDONE | RPERR | ERROR_GEN_FAILURE);
 return (RPDONE);

 case 0x03: /* read byte immed digio port */
 /* verify caller owns this buffer area */
 if(VerifyAccess(
 SELECTOROF(rp->s.IOCtl.buffer), /* selector */
 OFFSETOF(rp->s.IOCtl.buffer), /* offset */
 4, /* 4 bytes */
 0)) /* read only */
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);
 input_char = inp(DIGIO_INPUT); /* get data */
 if(MoveBytes((FARPOINTER)&input_char,
 rp->s.IOCtl.buffer,1))
 return(RPDONE | RPERR | ERROR_GEN_FAILURE);
 return (RPDONE);
 default:
 return(RPDONE | RPERR | ERROR_GEN_FAILURE);
 }

 /* don't allow deinstall */
 case RPDEINSTALL: /* 0x14 */
 return(RPDONE | RPERR | ERROR_BAD_COMMAND);
 /* all other commands are flagged as bad */
 default:
 return(RPDONE | RPERR | ERROR_BAD_COMMAND);
 }
}

timr_handler()
{
 if (ReadID != 0)
 {
 /* read data from port */
 input_char = inp(DIGIO_INPUT);/* get data */
 if ((input_char && input_mask) !=0)
 {
 Run (ReadID);
 ReadID=0L;
 }
 }
}

Copyright © 1997 Steven J. Mastrianni Page 81 3/30/2005

/* Device Initialization Routine */

int Init(PREQPACKET rp)
{
 /* store DevHlp entry point */
 DevHlp = rp->s.Init.DevHlp;
 /* install timer handler */
 if(SetTimer((PFUNCTION)TIMER_HANDLER)) {
 /* if we failed, deinstall driver with cs+ds=0 */
 DosPutMessage(1, 8, devhdr.DHname);
 DosPutMessage(1,strlen(FailMessage),FailMessage);
 rp->s.InitExit.finalCS = (OFF) 0;
 rp->s.InitExit.finalDS = (OFF) 0;
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);
 }
 /* configure 8255 parallel chip */
 outp (DIGIO_CONFIG,0x91);
 /* output initialization message */
 DosPutMessage(1, 2, CrLf);
 DosPutMessage(1, 8, devhdr.DHname);
 DosPutMessage(1, strlen(InitMessage1), InitMessage1);
 DosPutMessage(1, strlen(InitMessage2), InitMessage2);
 /* send back our code and data end values to os/2 */
 if (SegLimit(HIUSHORT((void far *) Init),
 &rp->s.InitExit.finalCS) || SegLimit(HIUSHORT((void far *)
 InitMessage2), &rp->s.InitExit.finalDS))
 Abort();
 return(RPDONE);
}

Figure A-1. OS/2 parallel device driver, 16-bit version.

/*
 digio.h memory map for os/2 device driver
*/

#define DIGIO_CAT 0x91 /* category for DosDevIOCtl */
#define DIGIO_BASE 0x2c0 /* board address */
#define DIGIO_OUTPUT DIGIO_BASE /* output port */
#define DIGIO_INPUT DIGIO_BASE+1 /* input port */
#define DIGIO_CONFIG DIGIO_BASE+3 /* initialization port */

Figure A-2. Parallel driver header file.

// file drvlib.h
// This header file contains definitions intended to go with
// DRVLIB.LIB, a C-callable subroutine library.
//
// This file is for OS/2 2.0
typedef unsigned char UCHAR;
typedef unsigned short USHORT;
typedef unsigned short BOOLEAN;
typedef unsigned long ULONG;
typedef UCHAR near *PUCHAR;
typedef UCHAR far *FPUCHAR;
typedef USHORT near *PUSHORT;
typedef USHORT far *FPUSHORT;
typedef ULONG near *PULONG;
typedef ULONG far *FPULONG;
typedef char near *PCHAR;
typedef short near *PSHORT;

Copyright © 1997 Steven J. Mastrianni Page 82 3/30/2005

typedef long near *PLONG;
typedef void near *POINTER;
typedef POINTER near *PPOINTER;
typedef void far *FARPOINTER;
typedef FARPOINTER near *PFARPOINTER;
typedef FARPOINTER far *FPFARPOINTER;

typedef USHORT ERRCODE; // error code returned
typedef ERRCODE far *PERRCODE; // pointer to an error code
typedef UCHAR FLAG; // 8-bit flag
typedef FLAG far *PFLAG; // pointer to 8-bit flag
typedef USHORT SEL; // 16-bit selector
typedef SEL near *PSEL; // pointer to a selector
typedef SEL far *FPSEL; // far pointer to selector
typedef USHORT SEG; // 16-bit segment
typedef USHORT OFF; // 16-bit offset
typedef ULONG LOFF; // 32-bit offset
typedef USHORT PID; // Process ID
typedef USHORT TID; // Thread ID
typedef ULONG PHYSADDR; // 32-bit physical address
typedef ULONG LINADDR; // 32-bit linear address
typedef LINADDR far *PLINADDR; // pointer to 32 bit address
typedef PLINADDR far *PPLINADDR; // pointer to linear address
typedef PHYSADDR far *PPHYSADDR; // pointer to 32-bit phys addr
typedef char near *PSTRING; // pointer to character string
typedef char far *FPSTRING; // far pointer to string
typedef USHORT SHANDLE; // short (16-bit) handle
typedef SHANDLE far *PSHANDLE; // pointer to a short handle
typedef ULONG LHANDLE; // long (32-bit) handle
typedef LHANDLE far *PLHANDLE; // pointer to a long handle

// pointers to functions
typedef int (pascal near *PFUNCTION) ();
typedef int (pascal near * near *PPFUNCTION) ();
typedef int (pascal far *FPFUNCTION) ();
typedef int (pascal far * near *PFPFUNCTION) ();

// macros
#define FALSE 0
#define TRUE 1
#define NP near pascal

// far pointer from selector-offset
#define MAKEP(sel, off) ((void far *) MAKEULONG(off, sel))

// get selector or offset from far pointer
#define SELECTOROF(p) (((USHORT far *) &(p)) [1])
#define OFFSETOF(p) (((USHORT far *) &(p)) [0])

// Combine l(ow) & h(igh) to form a 32 bit quantity.
#define MAKEULONG(l, h) ((ULONG)(((USHORT)(l))
 |((ULONG)((USHORT)(h))) << 16))
#define MAKELONG(l, h) ((LONG)MAKEULONG(l, h))
#define MAKEBIGOFFSETOF(p) ((ULONG) (OFFSETOF (p)))

// Combine l(ow) & h(igh) to form a 16 bit quantity.
#define MAKEUSHORT(l, h) (((USHORT)(l)) | ((USHORT)(h)) << 8)
#define MAKESHORT(l, h) ((SHORT)MAKEUSHORT(l, h))

// get high and low order parts of a 16 and 32 bit quantity
#define LOBYTE(w) LOUCHAR(w)
#define HIBYTE(w) HIUCHAR(w)
#define LOUCHAR(w) ((UCHAR)(w))
#define HIUCHAR(w) (((USHORT)(w) >> 8) & 0xff)
#define LOUSHORT(l) ((USHORT)(l))
#define HIUSHORT(l) ((USHORT)(((ULONG)(l) >> 16) & 0xffff))

// the driver device header
typedef struct DeviceHdr
{
 struct DeviceHdr far *DHnext;// pointer to next header, or FFFF
 USHORT DHattribute; // device attribute word

Copyright © 1997 Steven J. Mastrianni Page 83 3/30/2005

 OFF DHstrategy; // offset of strategy routine
 OFF DHidc; // offset of IDC routine
 UCHAR DHname[8]; // dev name (char) or #units (blk)
 char reserved[8];
 ULONG bit_strip; // bit 0 DevIOCtl2
} DEVICEHDR;
typedef DEVICEHDR near *PDEVICEHDR;

// driver device attributes word
#define DAW_CHR 0x8000 // 1=char, 0=block
#define DAW_IDC 0x4000 // 1=IDC available in this DD
#define DAW_IBM 0x2000 // 1=non-IBM block format
#define DAW_SHR 0x1000 // 1=supports shared device access
#define DAW_OPN 0x0800 // 1=open/close, removable media
#define DAW_LEVEL1 0x0080 // level 1
#define DAW_LEVEL2 0x0100 // level 2 DosDevIOCtl2
#define DAW_LEVEL3 0x0180 // level 3 bit strip
#define DAW_GIO 0x0040 // 1=generic IOCtl supported
#define DAW_CLK 0x0008 // 1=CLOCK device
#define DAW_NUL 0x0004 // 1=NUL device
#define DAW_SCR 0x0002 // 1=STDOUT (screen)
#define DAW_KBD 0x0001 // 1=STDIN (keyboard)

// capabilities bit strip
#define CBS_SHD 0x0001 // 1=shutdown/DevIOCtl2
#define CBS_HMEM 0x0002 // high memory map for adapters
#define CBS_PP 0x0004 // supports parallel ports
#define CBS_ADD 0x0010 // driver is an ADD
#define CBS_INIT 010020 // driver receives InitComplete

// SaveMessage structure
typedef struct MessageTable
{
 USHORT id;
 USHORT fill_in_item;
 FARPOINTER item1;
 FARPOINTER item2;
 FARPOINTER item_last;
} MESSAGETABLE;

// OS/2 circular character queues
#define QUEUE_SIZE 512 // size of queues
typedef struct CharQueue
{
 USHORT qsize; // number of bytes in queue
 USHORT qchrout; // index of next char to put out
 USHORT qcount; // number of charactes in queue
 UCHAR qbuf[QUEUE_SIZE];
} CHARQUEUE;
typedef CHARQUEUE near *PCHARQUEUE;

// AttachDD inter device driver communication data area
typedef struct AttachArea
{
 OFF realOFF; // offset of idc entry point
 SEG realCS; // real-mode CS of IDC entry point
 SEG realDS; // real-mode DS of IDC DD
 OFF protOFF; // protect-mode offset of entry pt
 SEL protCS; // protect-mode CS of entry point
 SEL protDS; // protect-mode DS of other DD
} ATTACHAREA;
typedef ATTACHAREA near *PATTACHAREA;

// driver request packet
typedef struct ReqPacket
{
 UCHAR RPlength; // request packet length
 UCHAR RPunit; // unit code for block DD only
 UCHAR RPcommand; // command code
 USHORT RPstatus; // status word
 UCHAR RPreserved[4]; // reserved bytes
 ULONG RPqlink; // queue linkage

Copyright © 1997 Steven J. Mastrianni Page 84 3/30/2005

 union
 { // command-specific data
 UCHAR avail[19];
 struct
 { // init
 UCHAR units; // number of units
 FPFUNCTION DevHlp; // &DevHlp
 char far *args; // &args
 UCHAR drive; // drive #
 }Init;
 struct
 {
 UCHAR units; // same as input
 OFF finalCS; // final offset, 1st code segment
 OFF finalDS; // final offset, 1st data segment
 FARPOINTER BPBarray; // &BPB
 } InitExit;
 struct
 { // read, write, write w/verify
 UCHAR media; // media descriptor
 PHYSADDR buffer; // transfer address
 USHORT count; // bytes/sectors
 ULONG startsector; // starting sector#
 USHORT reserved;
 } ReadWrite;
 struct
 { // cached rd, wr, write w/verify
 UCHAR media; // media descriptor
 PHYSADDR buffer; // transfer address
 USHORT count; // bytes/sectors
 ULONG startsector; // starting sector#
 USHORT reserved;
 } CReadWrite;
 struct
 { // system shutdown
 UCHAR subcode; // sub request code
 ULONG reserved;
 } Shutdown;
 struct
 { // open/close
 USHORT sysfilenum; // system file number
 } OpenClose;
 struct
 { // IOCtl
 UCHAR category; // category code
 UCHAR function; // function code
 FARPOINTER parameters; // ¶meters
 FARPOINTER buffer; // &buffer
 } IOCtl;
 struct
 { // read, no wait
 UCHAR char_returned; // char to return
 } ReadNoWait;
 struct
 { // media check
 UCHAR media; // media descriptor
 UCHAR return_code; // see #defines
 FARPOINTER prev_volume; // &previous volume ID
 } MediaCheck;
 struct
 { // build BPB
 UCHAR media; // media descriptor
 FARPOINTER buffer; // 1-sector buffer FAT
 FARPOINTER BPBarray; // &BPB array
 UCHAR drive; // drive #
 } BuildBPB;
 struct
 { // query part. fixed disks
 UCHAR count; // # disks
 ULONG reserved;
 } Partitionable;
 struct

Copyright © 1997 Steven J. Mastrianni Page 85 3/30/2005

 { // fixed disk LU map
 ULONG units; // units supported
 ULONG reserved;
 } GetFixedMap;
 struct
 { // get driver capabilities
 UCHAR reserved[3];
 FARPOINTER capstruct; // 16:16 pointer to DCS
 FARPOINTER volcharstruct; // 16:16 pointer to VCS
 } GetDriverCaps;
 } s; // command info
} REQPACKET;

typedef REQPACKET far *PREQPACKET;
typedef PREQPACKET far *PPREQPACKET;
typedef PREQPACKET QHEAD; // Queue Head is &ReqPacket
typedef QHEAD near *PQHEAD;

// Global Info Seg
typedef struct _GINFOSEG
{
 ULONG time;
 ULONG msecs;
 UCHAR hour;
 UCHAR minutes;
 UCHAR seconds;
 UCHAR hundredths;
 USHORT timezone;
 USHORT cusecTimerInterval;
 UCHAR day;
 UCHAR month;
 USHORT year;
 UCHAR weekday;
 UCHAR uchMajorVersion;
 UCHAR uchMinorVersion;
 UCHAR chRevisionLetter;
 UCHAR sgCurrent;
 UCHAR sgMax;
 UCHAR cHugeShift;
 UCHAR fProtectModeOnly;
 USHORT pidForeground;
 UCHAR fDynamicSched;
 UCHAR csecMaxWait;
 USHORT cmsecMinSlice;
 USHORT cmsecMaxSlice;
 USHORT bootdrive;
 UCHAR amecRAS[32];
 UCHAR csgWindowableVioMax;
 UCHAR csgPMMax;
} GINFOSEG;
typedef GINFOSEG far *PGINFOSEG;

// local info seg
typedef struct _LINFOSEG
{
 PID pidCurrent;
 PID pidParent;
 USHORT prtyCurrent;
 TID tidCurrent;
 USHORT sgCurrent;
 UCHAR rfProcStatus;
 UCHAR dummy1;
 USHORT fForeground;
 UCHAR typeProcess;
 UCHAR dummy2;
 SEL selEnvironment;
 USHORT offCmdLine;
 USHORT cbDataSegment;
 USHORT cbStack;
 USHORT cbHeap;
 USHORT hmod;
 SEL selDS;

Copyright © 1997 Steven J. Mastrianni Page 86 3/30/2005

} LINFOSEG;

typedef LINFOSEG far *PLINFOSEG;
typedef struct _REGSTACK
{ // stack usage structure
 USHORT usStruct; // set to 14 before using
 USHORT usFlags; // 0x01 means that the interrupt proc
 // enables interrupts. All others resvd
 USHORT usIRQ; // IRQ of interrupt handler
 USHORT usStackCLI; // # of stack bytes with interrupts off
 USHORT usStackSTI; // # of stack bytes with interrupts on
 USHORT usStackEOI; // number of bytes needed after EOI
 USHORT usNest; // max number of nested levels } REGSTACK;
typedef REGSTACK near *PREGSTACK;

// page list struct
typedef struct _PAGELIST
{
 ULONG pl_Physaddr;
 ULONG pl_cb;
} PAGELIST;
typedef PAGELIST far *PPAGELIST;

// RPstatus bit values
#define RPERR 0x8000 // error occurred, err in RPstatus
#define RPDEV 0x4000 // error code defined by driver
#define RPBUSY 0x0200 // device is busy
#define RPDONE 0x0100 // driver done with request packet

// error codes returned in RPstatus
#define ERROR_WRITE_PROTECT 0x0000
#define ERROR_BAD_UNIT 0x0001
#define ERROR_NOT_READY 0x0002
#define ERROR_BAD_COMMAND 0x0003
#define ERROR_CRC 0x0004
#define ERROR_BAD_LENGTH 0x0005
#define ERROR_SEEK 0x0006
#define ERROR_NOT_DOS_DISK 0x0007
#define ERROR_SECTOR_NOT_FOUND 0x0008
#define ERROR_OUT_OF_PAPER 0x0009
#define ERROR_WRITE_FAULT 0x000A
#define ERROR_READ_FAULT 0x000B
#define ERROR_GEN_FAILURE 0x000C
#define ERROR_DISK_CHANGE 0x000D
#define ERROR_WRONG_DISK 0x000F
#define ERROR_UNCERTAIN_MEDIA 0x0010
#define ERROR_CHAR_CALL_INTERRUPTED 0x0011
#define ERROR_NO_MONITOR_SUPPORT 0x0012
#define ERROR_INVALID_PARAMETER 0x0013
#define ERROR_DEVICE_IN_USE 0x0014

// driver request codes B=block, C=character
#define RPINIT 0x00 // BC
#define RPMEDIA_CHECK 0x01 // B
#define RPBUILD_BPB 0x02 // B
#define RPREAD 0x04 // BC
#define RPREAD_NO_WAIT 0x05 // C
#define RPINPUT_STATUS 0x06 // C
#define RPINPUT_FLUSH 0x07 // C
#define RPWRITE 0x08 // BC
#define RPWRITE_VERIFY 0x09 // BC
#define RPOUTPUT_STATUS 0x0a // C
#define RPOUTPUT_FLUSH 0x0b // C
#define RPOPEN 0x0d // BC
#define RPCLOSE 0x0e // BC
#define RPREMOVABLE 0x0f // B
#define RPIOCTL 0x10 // BC
#define RPRESET 0x11 // B
#define RPGET_DRIVE_MAP 0x12 // B
#define RPSET_DRIVE_MAP 0x13 // B
#define RPDEINSTALL 0x14 // C
#define RPPARTITIONABLE 0x16 // B

Copyright © 1997 Steven J. Mastrianni Page 87 3/30/2005

#define RPGET_FIXED_MAP 0x17 // B
#define RPSHUTDOWN 0x1c // BC
#define RPGET_DRIVER_CAPS 0x1d // B

// check for monitor call in DosOpen/DosClose
#define MON_OPEN_STATUS 0x08 // open from DosMonOpen
#define MON_CLOSE_STATUS 0x08 // close from DosMonClose

// media descriptor byte
#define MDB_REMOVABLE 0x04 // 1=removable
#define MDB_EIGHT_SECTORS 0x02 // 1=8 sectors per track
#define MDB_DOUBLE_SIDED 0x01 // 1=double-sided media

// return codes from MediaCheck
#define MC_MEDIA_UNCHANGED 0x01
#define MC_MEDIA_CHANGED 0xFF
#define MC_MEDIA_UNSURE 0x00

// event numbers for SendEvent

#define EVENT_SM_MOUSE 0x00 // session switch via mouse
#define EVENT_CTRLBRK 0x01 // control break
#define EVENT_CTRLC 0x02 // control C
#define EVENT_CTRLNUMLK 0x03 // control num lock
#define EVENT_CTRLPRTSC 0x04 // control printscreen
#define EVENT_SHFTPRTSC 0x05 // shift printscreen
#define EVENT_SM_KBD 0x06 // session switch hot key

// defines for 1.x movedata function
#define MOVE_PHYSTOPHYS 0 // move phys to phys memory
#define MOVE_PHYSTOVIRT 1 // move phys to virt memory
#define MOVE_VIRTTOPHYS 2 // move virt to phys memory
#define MOVE_VIRTTOVIRT 3 // move virt to virt memory

// Micro Channel specific
int NP GetLIDEntry (USHORT,USHORT,USHORT,FPUSHORT);
int NP FreeLIDEntry (USHORT);
int NP ABIOSCall (USHORT,USHORT,FARPOINTER);
int NP ABIOSComm (USHORT,FARPOINTER);
int NP GetDeviceBlock(USHORT,FARPOINTER);

// special routines
void NP INT3 (void);
void NP Enable (void);
void NP Disable (void);
void NP Abort (void);
int NP SegLimit (SEL,OFF far *);
int NP MoveBytes (FARPOINTER,FARPOINTER,FLAG);
int NP MoveData (FARPOINTER,FARPOINTER,USHORT,USHORT);

// system services and misc.
int NP GetDOSVar (USHORT,FPFARPOINTER);
int NP SendEvent (USHORT,USHORT);
void NP SchedClockAddr (PFARPOINTER);
int NP AttachDD (PSTRING,PATTACHAREA);
int NP InternalError(PSTRING,USHORT);
int NP SaveMessage(FPSTRING);
int NP ProtToReal(void);
int NP RealToProt(void);
int NP SetROMVector(USHORT,PFUNCTION,PFUNCTION,FARPOINTER);

// process mgmt
void NP Yield (void);
void NP TCYield (void);
int NP Block (ULONG,ULONG,USHORT,FARPOINTER);
void NP Run (ULONG);
void NP DevDone (PREQPACKET);
int NP VideoPause(USHORT);

// memory management
int NP AllocPhys (ULONG,USHORT,PPHYSADDR);
int NP FreePhys (PHYSADDR);

Copyright © 1997 Steven J. Mastrianni Page 88 3/30/2005

int NP VerifyAccess (SEL,OFF,USHORT,USHORT);
int NP LockSeg (SEL, USHORT,USHORT,PLHANDLE);
int NP UnLockSeg (LHANDLE);

// address conversion
int NP AllocGDTSelector(USHORT,FARPOINTER);
int NP PhysToGDTSelector(PHYSADDR,USHORT,SEL,PERRCODE);
int NP VirtToPhys (FARPOINTER,PPHYSADDR);
int NP PhysToUVirt (PHYSADDR,USHORT,USHORT,FPFARPOINTER);
int NP PhysToVirt (PHYSADDR,USHORT,USHORT,FARPOINTER);
int NP UnPhysToVirt (void);

// request packet queue stuff
int NP AllocReqPacket(USHORT,PPREQPACKET);
void NP FreeReqPacket (PREQPACKET);
void NP PushReqPacket (PQHEAD,PREQPACKET);
void NP SortReqPacket (PQHEAD,PREQPACKET);
int NP PullReqPacket (PQHEAD,PPREQPACKET);
int NP PullParticular(PQHEAD,PREQPACKET);

// driver semaphores
int NP SemHandle (LHANDLE,FLAG,PLHANDLE);
int NP SemRequest (LHANDLE,ULONG,PERRCODE);
void NP SemClear (LHANDLE);

// circular character queues
void NP QueueInit (PCHARQUEUE);
void NP QueueFlush (PCHARQUEUE);
int NP QueueWrite (PCHARQUEUE,UCHAR);
int NP QueueRead (PCHARQUEUE,FPUCHAR);

// interrupt stuff
int NP SetIRQ (USHORT,PFUNCTION,USHORT);
int NP UnSetIRQ (USHORT);
int NP EOI (USHORT);
void NP ClaimInterrupt(void);
void NP RefuseInterrupt(void);
int NP RegisterStackUsage(PREGSTACK);

// timer stuff
int NP SetTimer (PFUNCTION);
int NP ResetTimer (PFUNCTION);
int NP TickCount (PFUNCTION,USHORT);

// device monitors
int NP MonCreate (PSHANDLE,FARPOINTER,FARPOINTER,PERRCODE);
int NP Register (SHANDLE,USHORT,PID,FARPOINTER,OFF,PERRCODE);
int NP MonWrite (SHANDLE,POINTER,USHORT,USHORT,ULONG,PERRCODE);
int NP MonFlush (SHANDLE,PERRCODE);
int NP DeRegister (SHANDLE,PID,PERRCODE);

// 2.0 specfic
int NP RegisterPDD(FPUCHAR,FPFUNCTION);
int NP RegisterBeep(FPFUNCTION);
int NP Beep(USHORT,USHORT);
int NP FreeGDTSelector(USHORT);
int NP PhysToGDTSel(PHYSADDR,ULONG,SEL,USHORT,FPUSHORT);
int NP VMLock(LINADDR,ULONG,LINADDR,LINADDR,ULONG,FPULONG);
int NP VMUnlock(LHANDLE);
int NP VMAlloc(PLINADDR,ULONG,ULONG,PLINADDR);
int NP VMFree(PHYSADDR);
int NP VMProcessToGlobal(LINADDR,ULONG,ULONG,PLINADDR);
int NP VMGlobalToProcess(LINADDR,ULONG,ULONG,PLINADDR);
int NP VirtToLin(FARPOINTER,PLINADDR);
int NP LinToGDTSelector(SEL,LINADDR,ULONG);
int NP GetDescInfo(SEL,FPUSHORT,FPULONG,FPULONG);
int NP LinToPageList(LINADDR,ULONG,LINADDR,FPULONG);
int NP PageListToLin(ULONG,LINADDR,PLINADDR);
int NP PageListToGDTSelector(SEL,ULONG,LINADDR,USHORT,FPUSHORT);
int NP RegisterTmrDD(FPFUNCTION,FPFARPOINTER,FPFARPOINTER);
int NP AllocateCtxHook(OFF,ULONG,PLHANDLE);
int NP FreeCtxHook(LHANDLE);

Copyright © 1997 Steven J. Mastrianni Page 89 3/30/2005

int NP ArmCtxHook(ULONG,LHANDLE,ULONG);
int NP VMSetMem(LINADDR,ULONG,ULONG);
int NP OpenEventSem(LHANDLE);
int NP CloseEventSem(LHANDLE);
int NP PostEventSem(LHANDLE);
int NP ResetEventSem(LHANDLE,FPULONG);
int NP DynamicAPI(FARPOINTER,USHORT,USHORT,FPUSHORT);

// these are the only API's available to the driver at Init time
#define APIENTRY far pascal

USHORT APIENTRY DosBeep(USHORT,USHORT);
USHORT APIENTRY DosCaseMap(USHORT,FARPOINTER,FARPOINTER);
USHORT APIENTRY DosChgFilePtr(SHANDLE,long,USHORT,FARPOINTER);
USHORT APIENTRY DosClose(SHANDLE);
USHORT APIENTRY DosDelete(FARPOINTER,ULONG);
USHORT APIENTRY DosDevConfig(FARPOINTER,USHORT,USHORT);
USHORT APIENTRY DosDevIOCtl(FARPOINTER,FARPOINTER,USHORT,
 USHORT, USHORT);
USHORT APIENTRY DosFindClose(SHANDLE);
USHORT APIENTRY DosFindFirst(FARPOINTER,FARPOINTER,USHORT,
 FARPOINTER,USHORT, FARPOINTER, ULONG);
USHORT APIENTRY DosFindNext(SHANDLE,FARPOINTER,USHORT,
 FARPOINTER);
USHORT APIENTRY DosGetEnv(FARPOINTER,FARPOINTER);
USHORT APIENTRY DosGetMessage(FARPOINTER,USHORT,FARPOINTER,
 USHORT,USHORT, FARPOINTER, FARPOINTER);
USHORT APIENTRY DosOpen(FARPOINTER,FARPOINTER,FARPOINTER,
 ULONG,USHORT, USHORT, USHORT, ULONG);
USHORT APIENTRY DosPutMessage(SHANDLE,USHORT,FARPOINTER);
USHORT APIENTRY DosQCurDir(USHORT,FARPOINTER,FARPOINTER);
USHORT APIENTRY DosQCurDisk(FARPOINTER,FARPOINTER);
USHORT APIENTRY DosQFileInfo(SHANDLE,USHORT,FARPOINTER,USHORT);
USHORT APIENTRY DosQFileMode(FARPOINTER,FARPOINTER,ULONG);
USHORT APIENTRY DosRead(SHANDLE,FARPOINTER,USHORT,FARPOINTER);
USHORT APIENTRY DosWrite(SHANDLE,FARPOINTER,USHORT,FARPOINTER);

// end of DRVLIB.H

Figure A-3. Driver library header file, 16-bit.

// file drvlib32.h 32-bit version
// This header file contains definitions intended to go along with
// DRVLIB.LIB, a C-callable subroutine library.
//
// This file is for OS/2 2.x

typedef unsigned char UCHAR;
typedef unsigned short USHORT;
typedef unsigned short BOOLEAN;
typedef unsigned long ULONG;
typedef UCHAR *PUCHAR;
typedef USHORT *PUSHORT;
typedef ULONG *PULONG;
typedef char *PCHAR;
typedef short *PSHORT;
typedef long *PLONG;
typedef void *PVOID;
typedef PVOID *PPVOID;

typedef USHORT ERRCODE; // error code returned
typedef ERRCODE *PERRCODE; // pointer to an error code
typedef UCHAR FLAG; // 8-bit flag
typedef FLAG *PFLAG; // pointer to 8-bit flag
typedef USHORT SEL; // 16-bit selector
typedef SEL *PSEL; // pointer to a selector

Copyright © 1997 Steven J. Mastrianni Page 90 3/30/2005

typedef USHORT OFFSET; // 16-bit offset
typedef USHORT SEG; // 16-bit segment
typedef USHORT PID; // Process ID
typedef USHORT TID; // Thread ID
typedef ULONG PHYSADDR; // 32-bit physical address
typedef ULONG LINADDR; // 32-bit li address
typedef LINADDR *PLINADDR; // pointer to 32 bit li address
typedef PLINADDR *PPLINADDR; // pointer to li address pointer
typedef PHYSADDR *PPHYSADDR; // pointer to 32-bit physical address
typedef char *PSTRING; // pointer to character string
typedef USHORT SHANDLE; // short (16-bit) handle
typedef SHANDLE *PSHANDLE; // pointer to a short handle
typedef ULONG LHANDLE; // long (32-bit) handle
typedef LHANDLE HSPINLOCK; // spinlock handle
typedef LHANDLE *PLHANDLE; // pointer to a long handle
typedef HSPINLOCK *PHSPINLOCK; // pointer to spinlock handle

// pointers to functions

typedef int (*PFUNCTION) ();
typedef int (* *PPFUNCTION) ();

// macros

#define FALSE 0
#define TRUE 1

// pointer from selector-offset

#define MAKEP(sel, off) ((void *) MAKEULONG(off, sel))

// get selector or offset from pointer

#define SELECTOROF(p) (((USHORT *) &(p)) [1])
#define OFFSETOF(p) (((USHORT *) &(p)) [0])

// Combine l(ow) & h(igh) to form a 32 bit quantity.

#define MAKEULONG(l, h) ((ULONG)(((USHORT)(l)) | ((ULONG)((USHORT)(h))) << 16))
#define MAKELONG(l, h) ((LONG)MAKEULONG(l, h))
#define MAKEBIGPFUNCTIONSETOF(p) ((ULONG) (PFUNCTIONSETOF (p)))

// Combine l(ow) & h(igh) to form a 16 bit quantity.

#define MAKEUSHORT(l, h) (((USHORT)(l)) | ((USHORT)(h)) << 8)
#define MAKESHORT(l, h) ((SHORT)MAKEUSHORT(l, h))

// get high and low order parts of a 16 and 32 bit quantity

#define LOBYTE(w) LOUCHAR(w)
#define HIBYTE(w) HIUCHAR(w)
#define LOUCHAR(w) ((UCHAR)(w))
#define HIUCHAR(w) (((USHORT)(w) >> 8) & 0xff)
#define LOUSHORT(l) ((USHORT)(l))
#define HIUSHORT(l) ((USHORT)(((ULONG)(l) >> 16) & 0xffff))

// the driver device header

typedef struct DeviceHdr
{
 struct DeviceHdr *DHnext; // pointer to next header, or FFFF
 USHORT DHattribute; // device attribute word
 PFUNCTION DHstrategy; // offset of strategy routine
 PFUNCTION DHidc; // offset of IDC routine
 UCHAR DHname[8]; // dev name (char) or #units (blk)
 char reserved[8];
 ULONG bit_strip; // bit 0 DevIOCtl2, bit 1 32 bit addr
} DEVICEHDR;
typedef DEVICEHDR *PDEVICEHDR;

// driver device attributes word

Copyright © 1997 Steven J. Mastrianni Page 91 3/30/2005

#define DAW_CHR 0x8000 // 1=char, 0=block
#define DAW_IDC 0x4000 // 1=IDC available in this DD
#define DAW_IBM 0x2000 // 1=non-IBM block format
#define DAW_SHR 0x1000 // 1=supports shared device access
#define DAW_OPN 0x0800 // 1=open/close, or removable media
#define DAW_LEVEL1 0x0080 // level 1
#define DAW_LEVEL2 0x0100 // level 2 DosDevIOCtl2
#define DAW_LEVEL3 0x0180 // level 3 bit strip
#define DAW_GIO 0x0040 // 1=generic IOCtl supported
#define DAW_CLK 0x0008 // 1=CLOCK device
#define DAW_NUL 0x0004 // 1=NUL device
#define DAW_SCR 0x0002 // 1=STDOUT (screen)
#define DAW_KBD 0x0001 // 1=STDIN (keyboard)

// capabilities bit strip

#define CBS_SHD 0x0001 // 1=shutdown/DevIOCtl2
#define CBS_HMEM 0x0002 // hign memory map for adapters
#define CBS_PP 0x0004 // supports parallel ports
#define CBS_ADD 0x0008 // driver is an ADD
#define CBS_INIT 0x0010 // driver receives InitComplete

// SaveMessage structure

typedef struct MessageTable
{
 USHORT id;
 USHORT fill_in_item;
 PVOID item1;
 PVOID item2;
 PVOID item_last;
} MESSAGETABLE;

// OS/2 circular character queues

#define QUEUE_SIZE 512 // size of queues
typedef struct CharQueue
{
 USHORT qsize; // number of bytes in queue
 USHORT qchrout; // index of next char to put out
 USHORT qcount; // number of charactes in queue
 UCHAR qbuf[QUEUE_SIZE];
} CHARQUEUE;
typedef CHARQUEUE *PCHARQUEUE;

// PortIO structure for SMP systems

typedef struct _PORTIO_STRUCT
{
 ULONG port; // port to read/write
 ULONG data; // data to write or returned from read
 ULONG flags; // flags defined below
} PORTIO_STRUCT;
typedef PORTIO_STRUCT *PPORTIO_STRUCT;

// defines for PortIOStruct flags

#define PORTIO_READ_BYTE 0x00
#define PORTIO_READ_WORD 0x01
#define PORTIO_READ_DWORD 0x02
#define PORTIO_WRITE_BYTE 0x03
#define PORTIO_WRITE_WORD 0x04
#define PORTIO_WRITE_DWORD 0x05
#define PORTIO_FLAG_MASK 0x07

// structures and equates for APM
// APM IDC return codes

#define APMIDC_Register 0x00
#define APMIDC_DeRegister 0x01
#define APMIDC_SendEvent 0x02
#define APMIDC_QueryStatus 0x03

Copyright © 1997 Steven J. Mastrianni Page 92 3/30/2005

#define APMIDC_QueryInfo 0x04

// APM IDC return codes

#define APMIDC_InvalidFunction 0x00
#define APMIDC_InvalidHandle 0x01
#define APMIDC_InvalidDevice 0x02
#define APMIDC_InvalidEvent 0x03
#define APMIDC_InvalidOther 0x04
#define APMIDC_InterfaceBusy 0x05
#define APMIDC_RequestRejected 0x06
#define APMIDC_InvalidMask 0x07

// APM Notification Mask Definitions

#define APMMASK_EnableAPM 0x08
#define APMMASK_DisableAPM 0x10
#define APMMASK_BIOS_Defaults 0x20
#define APMMASK_SetPowerState 0x40
#define APMMASK_BatteryLow 0x80
#define APMMASK_NormalResume 0x100
#define APMMASK_CriticalResume 0x200
#define APMMASK_AllAppNotifyBits 0x3f8

// APM Event Identification

#define APMEVENT_EnableAPM 0x03
#define APMEVENT_DisableAPM 0x04
#define APMEVENT_BIOS_Defauts 0x05
#define APMEVENT_SetPowerState 0x06
#define APMEVENT_BatteryLow 0x07
#define APMEVENT_NormalResume 0x08
#define APMEVENT_CriticalResume 0x09

// Notify defines

#define APMSTATE_READY 0x00
#define APMSTATE_STANDBY 0x01
#define APMSTATE_SUSPEND 0x02
#define APMSTATE_PFUNCTION 0x03

// APM IDC Structures

typedef struct _APMIDC_REGISTER_PKT
{
 USHORT RegFunction;
 USHORT ReghClient;
 USHORT RegEventHandlerOff;
 USHORT RegEventHandlerSel;
 ULONG RegNotifyMask;
 USHORT RegClientDS;
 USHORT RegDeviceID;

} APMIDC_REGISTER_PKT;

typedef struct _APMIDC_NOTIFY_PKT
{
 USHORT NotifyFunction;
 USHORT SubID;
 USHORT Reserved;
 USHORT DevID;
 USHORT PwrState;

} APMIDC_NOTIFY_PKT;

typedef struct _APMIDC_DEREGISTER_PKT
{
 USHORT DregFunction;
 USHORT DreghClient;

} APMIDC_DEREGISTER_PKT;

Copyright © 1997 Steven J. Mastrianni Page 93 3/30/2005

typedef struct _APMIDC_SENDEVENT_PKT
{
 USHORT SendevFunction;
 USHORT SendevSubID;
 USHORT SendevReserved;
 USHORT SendevDevID;
 USHORT SendevPwrState;

} APMIDC_SENDEVENT_PKT;

typedef struct _APMIDC_QSTATUS_PKT
{
 USHORT QstatFunction;
 USHORT QstatParmLength;
 USHORT QstatFlags;
 UCHAR QstatACStatus;
 UCHAR QstateBatteryStatus;
 UCHAR QstateBatteryLife;

} APMIDC_QSTATUS_PKT;

typedef struct _APMIDC_QINFO_PKT
{
 USHORT QinfoFunction;
 USHORT QinfoParmLength;
 USHORT QinfoBIOSFlags;
 UCHAR QinfoBIOSMajor;
 UCHAR QinfoBIOSMinor;
 UCHAR QinfoDDMajor;
 UCHAR QinfoDDMinor;

} APMIDC_QINFO_PKT;

// AttachDD inter device driver communication data area

typedef struct AttachArea
{
 PFUNCTION realPFUNCTION; // real-mode offset of idc entry
point
 SEG realCS; // real-mode CS of IDC entry point
 SEG realDS; // real-mode DS of IDC DD
 PFUNCTION protPFUNCTION; // protect-mode offset of entry
point
 SEL protCS; // protect-mode CS of entry point
 SEL protDS; // protect-mode DS of other DD
} ATTACHAREA;
typedef ATTACHAREA *PATTACHAREA;

// driver request packet

typedef struct ReqPacket
{
 UCHAR RPlength; // request packet length
 UCHAR RPunit; // unit code for block DD only
 UCHAR RPcommand; // command code
 USHORT RPstatus; // status word
 UCHAR RPreserved[4]; // reserved bytes
 ULONG RPqlink; // queue linkage
 union { // command-specific data
 UCHAR avail[19];
 struct { // init
 UCHAR units; // number of units
 PFUNCTION DevHlp; // &DevHlp
 char *args; // &args
 UCHAR drive; // drive #
 }Init;
 struct {
 UCHAR units; // same as input
 PFUNCTION finalCS; // final offset, 1st code segment
 PFUNCTION finalDS; // final offset, 1st data segment
 PVOID BPBarray; // &BPB
 } InitExit;

Copyright © 1997 Steven J. Mastrianni Page 94 3/30/2005

 struct { // read, write, write w/verify
 UCHAR media; // media descriptor
 PHYSADDR buffer; // transfer address
 USHORT count; // bytes/sectors
 ULONG startsector; // starting sector#
 USHORT reserved;
 } ReadWrite;

 struct { // cached read, write, write w/verify
 UCHAR media; // media descriptor
 PHYSADDR buffer; // transfer address
 USHORT count; // bytes/sectors
 ULONG startsector; // starting sector#
 USHORT reserved;
 } CReadWrite;

 struct { // system shutdown
 UCHAR subcode; // sub request code
 ULONG reserved;
 } Shutdown;

 struct { // open/close
 USHORT sysfilenum; // system file number
 } OpenClose;

 struct { // IOCtl
 UCHAR category; // category code
 UCHAR function; // function code
 PVOID parameters; // ¶meters
 PVOID buffer; // &buffer
 } IOCtl;

 struct { // read, no wait
 UCHAR char_returned; // char to return
 } ReadNoWait;

 struct { // media check
 UCHAR media; // media descriptor
 UCHAR return_code; // see #defines
 PVOID prev_volume; // &previous volume ID
 } MediaCheck;

 struct { // build BPB
 UCHAR media; // media descriptor
 PVOID buffer; // 1-sector buffer FAT
 PVOID BPBarray; // &BPB array
 UCHAR drive; // drive #
 } BuildBPB;

 struct { // query partitionalble fixed disks
 UCHAR count; // # disks
 ULONG reserved;
 } Partitionable;

 struct { // fixed disk LU map
 ULONG units; // units supported
 ULONG reserved;
 } GetFixedMap;

 struct { // get driver capabilities
 UCHAR reserved[3];
 PVOID capstruct; // 16:16 pointer to DCS
 PVOID volcharstruct; // 16:16 pointer to VCS
 } GetDriverCaps;

 } s; // command info
} REQPACKET;

typedef REQPACKET *PREQPACKET;
typedef PREQPACKET *PPREQPACKET;
typedef PREQPACKET QHEAD; // Queue Head is &ReqPacket

Copyright © 1997 Steven J. Mastrianni Page 95 3/30/2005

typedef QHEAD *PQHEAD;

// Global Info Seg

typedef struct _GINFOSEG
{
 ULONG time; // time in seconds
 ULONG msecs; // milliseconds
 UCHAR hour; // hours
 UCHAR minutes; // minutes
 UCHAR seconds; // seconds
 UCHAR hundredths; // hundredths
 USHORT timezone; // minutes from UTC
 USHORT cusecTimerInterval; // timter interval, .0001 secs
 UCHAR day; // day of month
 UCHAR month; // month, 1-12
 USHORT year; // year
 UCHAR weekday; // day of week, 0=Sunday, 1=Monday...
 UCHAR uchMajorVersion; // major version number
 UCHAR uchMinorVersion; // minor version number
 UCHAR chRevisionLetter; // rev level
 UCHAR sgCurrent; // current foreground session
 UCHAR sgMax; // max number of sessions
 UCHAR cHugeShift; // shift count for huge elements
 UCHAR fProtectModeOnly; // protect mode only
 USHORT pidForeground; // pid of last process in foreground
 UCHAR fDynamicSched; // dynamic variation flag
 UCHAR csecMaxWait; // max wait in seconds
 USHORT cmsecMinSlice; // min timeslice in milliseconds
 USHORT cmsecMaxSlice; // max timeslice in milliseconds
 USHORT bootdrive; // boot drive (0=a, 1=b...)
 UCHAR amecRAS[32]; // system trace major code flag bits
 UCHAR csgWindowableVioMax; // max number of VIO sessions
 UCHAR csgPMMax; // max number of PM sessions
} GINFOSEG;
typedef GINFOSEG *PGINFOSEG;

// local info seg

typedef struct _LINFOSEG
{
 PID pidCurrent; // current process id
 PID pidParent; // process id of parent
 USHORT prtyCurrent; // priroty of current thread
 TID tidCurrent; // thread id of current thread
 USHORT sgCurrent; // current session id
 UCHAR rfProcStatus; // process status
 UCHAR dummy1; // reserved
 USHORT fForeground; // current process is in foreground
 UCHAR typeProcess; // process type
 UCHAR dummy2; // reserved
 SEL selEnvironment; // selector of environment
 USHORT offCmdLine; // command line offset
 USHORT cbDataSegment; // length of data segment
 USHORT cbStack; // stack size
 USHORT cbHeap; // heap size
 USHORT hmod; // module handle of application
 SEL selDS; // data segment handle of application
} LINFOSEG;

typedef LINFOSEG *PLINFOSEG;

typedef struct _REGSTACK { // stack usgae structure
 USHORT usStruct; // set to 14 before using
 USHORT usFlags; // 0x01 means that the interrupt proc
 // enables interrupts. All others resvd
 USHORT usIRQ; // IRQ of interrupt handler
 USHORT usStackCLI; // # of stack bytes with interrupts off
 USHORT usStackSTI; // # of stack bytes with interrupts on
 USHORT usStackEOI; // number of bytes needed after EOI
 USHORT usNest; // max number of nested levels
 } REGSTACK;

Copyright © 1997 Steven J. Mastrianni Page 96 3/30/2005

typedef REGSTACK *PREGSTACK;

// page list struct

typedef struct _PAGELIST
{
 ULONG pl_Physaddr;
 ULONG pl_cb;
} PAGELIST;
typedef PAGELIST *PPAGELIST;

// RPstatus bit values

#define RPERR 0x8000 // error occurred, err in RPstatus
#define RPDEV 0x4000 // error code defined by driver
#define RPBUSY 0x0200 // device is busy
#define RPDONE 0x0100 // driver done with request packet

// error codes returned in RPstatus

#define ERROR_WRITE_PROTECT 0x0000
#define ERROR_BAD_UNIT 0x0001
#define ERROR_NOT_READY 0x0002
#define ERROR_BAD_COMMAND 0x0003
#define ERROR_CRC 0x0004
#define ERROR_BAD_LENGTH 0x0005
#define ERROR_SEEK 0x0006
#define ERROR_NOT_DOS_DISK 0x0007
#define ERROR_SECTOR_NOT_FOUND 0x0008
#define ERROR_OUT_OF_PAPER 0x0009
#define ERROR_WRITE_FAULT 0x000A
#define ERROR_READ_FAULT 0x000B
#define ERROR_GEN_FAILURE 0x000C
#define ERROR_DISK_CHANGE 0x000D
#define ERROR_WRONG_DISK 0x000F
#define ERROR_UNCERTAIN_MEDIA 0x0010
#define ERROR_CHAR_CALL_INTERRUPTED 0x0011
#define ERROR_NO_MONITOR_SUPPORT 0x0012
#define ERROR_INVALID_PARAMETER 0x0013
#define ERROR_DEVICE_IN_USE 0x0014
#define ERROR_QUIET_FAIL 0x0015

// driver request codes B=block, C=character

#define RPINIT 0x00 // BC
#define RPMEDIA_CHECK 0x01 // B
#define RPBUILD_BPB 0x02 // B
#define RPREAD 0x04 // BC
#define RPREAD_NO_WAIT 0x05 // C
#define RPINPUT_STATUS 0x06 // C
#define RPINPUT_FLUSH 0x07 // C
#define RPWRITE 0x08 // BC
#define RPWRITE_VERIFY 0x09 // BC
#define RPOUTPUT_STATUS 0x0a // C
#define RPOUTPUT_FLUSH 0x0b // C
#define RPOPEN 0x0d // BC
#define RPCLOSE 0x0e // BC
#define RPREMOVABLE 0x0f // B
#define RPIOCTL 0x10 // BC
#define RPRESET 0x11 // B
#define RPGET_DRIVE_MAP 0x12 // B
#define RPSET_DRIVE_MAP 0x13 // B
#define RPDEINSTALL 0x14 // C
#define RPPARTITIONABLE 0x16 // B
#define RPGET_FIXED_MAP 0x17 // B
#define RPSHUTDOWN 0x1c // BC
#define RPGET_DRIVER_CAPS 0x1d // B
#define RPINIT_COMPLETE 0x1f // BC

// check for monitor call in DosOpen/DosClose

Copyright © 1997 Steven J. Mastrianni Page 97 3/30/2005

#define MON_OPEN_STATUS 0x08 // open from DosMonOpen
#define MON_CLOSE_STATUS 0x08 // close from DosMonClose

// media descriptor byte

#define MDB_REMOVABLE 0x04 // 1=removable
#define MDB_EIGHT_SECTORS 0x02 // 1=8 sectors per track
#define MDB_DOUBLE_SIDED 0x01 // 1=double-sided media

// return codes from MediaCheck

#define MC_MEDIA_UNCHANGED 0x01
#define MC_MEDIA_CHANGED 0xFF
#define MC_MEDIA_UNSURE 0x00

// event numbers for SendEvent

#define EVENT_SM_MOUSE 0x00 // session switch via mouse
#define EVENT_CTRLBRK 0x01 // control break
#define EVENT_CTRLC 0x02 // control C
#define EVENT_CTRLNUMLK 0x03 // control num lock
#define EVENT_CTRLPRTSC 0x04 // control printscreen
#define EVENT_SHFTPRTSC 0x05 // shift printscreen
#define EVENT_SM_KBD 0x06 // session switch hot key

// defines for 1.x movedata function

#define MOVE_PHYSTOPHYS 0 // move bytes from phys to phys memory
#define MOVE_PHYSTOVIRT 1 // move bytes from phys to virt memory
#define MOVE_VIRTTOPHYS 2 // move bytes from virt to phys memory
#define MOVE_VIRTTOVIRT 3 // move bytes from virt to virt memory

// Micro Channel specific

int GetLIDEntry (USHORT, USHORT, USHORT, PUSHORT);
int FreeLIDEntry (USHORT);
int ABIOSCall (USHORT, USHORT, PVOID);
int ABIOSComm (USHORT, PVOID);
int GetDeviceBlock(USHORT, PVOID);

// special routines

void INT3 (void);
void Enable (void);
void Disable (void);
void Abort (void);
int SegLimit (SEL, PFUNCTION *);
int MoveBytes (PVOID,PVOID,USHORT);
int MoveData (PVOID, PVOID, USHORT, USHORT);

// system services and misc.

int GetDOSVar (USHORT, PPVOID);
int SendEvent (USHORT, USHORT);
void SchedClockAddr (PPVOID);
int AttachDD (PSTRING, PATTACHAREA);
int InternalError(PSTRING,USHORT);
int SaveMessage(PSTRING);
int ProtToReal(void);
int RealToProt(void);
int SetROMVector(USHORT,PFUNCTION,PFUNCTION,PVOID);

// process mgmt

void Yield (void);
void TCYield (void);
int Block (ULONG, ULONG, USHORT, PVOID);
void Run (ULONG);
void DevDone (PREQPACKET);
int VideoPause(USHORT);

// memory management

Copyright © 1997 Steven J. Mastrianni Page 98 3/30/2005

int AllocPhys (ULONG, USHORT, PPHYSADDR);
int FreePhys (PHYSADDR);
int VerifyAccess (SEL, OFFSET, USHORT, USHORT);
int LockSeg (SEL, USHORT, USHORT, PLHANDLE);
int UnLockSeg (LHANDLE);

// address conversion

int AllocGDTSelector(USHORT, PVOID);
int PhysToGDTSelector(PHYSADDR, USHORT, SEL, PERRCODE);
int VirtToPhys (PVOID, PPHYSADDR);
int PhysToUVirt (PHYSADDR, USHORT, USHORT, PVOID);
int PhysToVirt (PHYSADDR, USHORT, USHORT, PVOID);
int UnPhysToVirt (void);

// request packet queue stuff

int AllocReqPacket (USHORT, PPREQPACKET);
void FreeReqPacket (PREQPACKET);
void PushReqPacket (PQHEAD, PREQPACKET);
void SortReqPacket (PQHEAD, PREQPACKET);
int PullReqPacket (PQHEAD, PPREQPACKET);
int PullParticular (PQHEAD, PREQPACKET);

// driver semaphores

int SemHandle (LHANDLE, FLAG, PLHANDLE);
int SemRequest (LHANDLE, ULONG, PERRCODE);
void SemClear (LHANDLE);

// circular character queues

void QueueInit (PCHARQUEUE);
void QueueFlush (PCHARQUEUE);
int QueueWrite (PCHARQUEUE, UCHAR);
int QueueRead (PCHARQUEUE, PUCHAR);

// interrupt stuff

int SetIRQ (USHORT, PFUNCTION, USHORT);
int UnSetIRQ (USHORT);
int EOI (USHORT);
void ClaimInterrupt(void);
void RefuseInterrupt(void);
int RegisterStackUsage(PREGSTACK);

// timer stuff

int SetTimer (PFUNCTION);
int ResetTimer (PFUNCTION);
int TickCount (PFUNCTION, USHORT);

// device monitors

int MonCreate (PSHANDLE, PVOID, PVOID, PERRCODE);
int Register (SHANDLE, USHORT, PID, PVOID, PFUNCTION, PERRCODE);
int MonWrite (SHANDLE, PVOID, USHORT, USHORT, ULONG, PERRCODE);
int MonFlush (SHANDLE, PERRCODE);
int DeRegister (SHANDLE, PID, PERRCODE);

// 2.x specfic

int RegisterPDD(PUCHAR,PFUNCTION);
int RegisterBeep(PFUNCTION);
int Beep(USHORT,USHORT);
int FreeGDTSelector(USHORT);
int PhysToGDTSel(PHYSADDR,ULONG,SEL,USHORT,PUSHORT);
int VMLock(LINADDR,ULONG,LINADDR,LINADDR,ULONG,PULONG);
int VMUnlock(LHANDLE);
int VMAlloc(LINADDR,ULONG,ULONG,PLINADDR);
int VMFree(PHYSADDR);

Copyright © 1997 Steven J. Mastrianni Page 99 3/30/2005

int VMProcessToGlobal(LINADDR,ULONG,ULONG,PLINADDR);
int VMGlobalToProcess(LINADDR,ULONG,ULONG,PLINADDR);
int VirtToLin(PVOID,PLINADDR);
int LinToGDTSelector(SEL,LINADDR,ULONG);
int GetDescInfo(SEL,PUSHORT,PULONG,PULONG);
int LinToPageList(LINADDR,ULONG,LINADDR,PULONG);
int PageListToLin(ULONG,LINADDR,PLINADDR);
int PageListToGDTSelector(SEL,ULONG,LINADDR,USHORT,PUSHORT);
int RegisterTmrDD(PFUNCTION,PPVOID,PPVOID);
int AllocCtxHook(PFUNCTION,ULONG,PLHANDLE);
int FreeCtxHook(LHANDLE);
int ArmCtxHook(ULONG,LHANDLE,ULONG);
int VMSetMem(LINADDR,ULONG,ULONG);
int OpenEventSem(LHANDLE);
int CloseEventSem(LHANDLE);
int PostEventSem(LHANDLE);
int ResetEventSem(LHANDLE,LINADDR);
int DynamicAPI(PVOID,USHORT,USHORT,PUSHORT);

// SMP DevHlps

int CreateSpinLock(PHSPINLOCK);
int FreeSpinLock(HSPINLOCK);
int AcquireSpinLock(HSPINLOCK);
int ReleaseSpinLock(HSPINLOCK);
int PortIO(PPORTIO_STRUCT);

int SetIRQMask(USHORT,USHORT);
int GetIRQMask(USHORT,PVOID);

// APM

int APMInit(PVOID);
int APMDeReg(PVOID);
int NoError();
int GetMachine(PVOID);

// these are the only API's available to the driver at Init time

#define APIENTRY

USHORT APIENTRY DosBeep(USHORT, USHORT);
USHORT APIENTRY DosCaseMap(USHORT, PVOID, PVOID);
USHORT APIENTRY DosChgFilePtr(SHANDLE, long, USHORT, PVOID);
USHORT APIENTRY DosClose(SHANDLE);
USHORT APIENTRY DosDelete(PVOID, ULONG);
USHORT APIENTRY DosDevConfig(PVOID, USHORT, USHORT);
USHORT APIENTRY DosDevIOCtl(PVOID, PVOID, USHORT, USHORT, USHORT);
USHORT APIENTRY DosFindClose(SHANDLE);
USHORT APIENTRY DosFindFirst(PVOID, PVOID, USHORT, PVOID,
 USHORT, PVOID, ULONG);
USHORT APIENTRY DosFindNext(SHANDLE, PVOID, USHORT, PVOID);
USHORT APIENTRY DosGetEnv(PVOID, PVOID);
USHORT APIENTRY DosGetMessage(PVOID, USHORT, PVOID, USHORT,
 USHORT, PVOID, PVOID);
USHORT APIENTRY DosOpen(PVOID, PVOID, PVOID, ULONG,
 USHORT, USHORT, USHORT, ULONG);

Copyright © 1997 Steven J. Mastrianni Page 100 3/30/2005

USHORT APIENTRY DosPutMessage(SHANDLE, USHORT, PVOID);
USHORT APIENTRY DosQCurDir(USHORT, PVOID, PVOID);
USHORT APIENTRY DosQCurDisk(PVOID, PVOID);
USHORT APIENTRY DosQFileInfo(SHANDLE, USHORT, PVOID, USHORT);
USHORT APIENTRY DosQFileMode(PVOID, PVOID, ULONG);
USHORT APIENTRY DosRead(SHANDLE, PVOID, USHORT, PVOID);
USHORT APIENTRY DosWrite(SHANDLE, PVOID, USHORT, PVOID);
USHORT APIENTRY DosCreateSpinLock(PHSPINLOCK);
USHORT APIENTRY DosFreeSpinLock(HSPINLOCK);

// end of DRVLIB.H

Figure A-4. Driver library header file, 32-bit.

#include "drvlib.h"
#include "digio.h"

int main(PREQPACKET rp);

DEVICEHDR devhdr =
{
 (void *) 0xFFFFFFFF, /* link */
 (DAW_CHR | DAW_OPN | DAW_LEVEL1),/* attribute word */
 &main, /* &strategy */
 0, /* &IDC routine */
 "DIGIO$ " /* name/#units */
};

PFUNCTION DevHlp=0; /* pointer to DevHlp entry point */
UCHAR opencount = 0; /* keeps track of open's */
USHORT savepid=0; /* save thread pid */
LHANDLE lock_seg_han; /* handle for locking appl. seg */
PHYSADDR appl_buffer=0; /* address of caller's buffer */
ERRCODE err=0; /* error return */
ULONG ReadID=0L; /* current read pointer */
USHORT num_rupts=0; /* count of interrupts */
USHORT temp_char; /* temp character for in-out */
void *ptr; /* temp pointer */
PVOID appl_ptr=0; /* pointer to application buffer */
char input_char,output_char; /* temp character storage */
char input_mask; /* mask for input byte */

/* messages */
char CrLf[]= "\r\n";
char InitMessage1[] = " 8 bit Digital I/O ";
char InitMessage2[] = " driver installed\r\n";
char FailMessage[] = " driver failed to install.\r\n";

/* common entry point for calls to Strategy routines */
int main(PREQPACKET rp)
{
 void *ptr;
 PLINFOSEG liptr; /* pointer to global info seg */
 int i;

 switch(rp->RPcommand)
 {
 case RPINIT: /* 0x00 */
 /* init called by kernel in protected mode */
 return Init(rp);

 case RPREAD: /* 0x04 */
 rp->s.ReadWrite.count = 0; /* in case we fail */
 input_char = inp(DIGIO_INPUT);/* get data */
 if (PhysToVirt((ULONG) rp->s.ReadWrite.buffer,

Copyright © 1997 Steven J. Mastrianni Page 101 3/30/2005

 1,0,&appl_ptr))
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);
 if (MoveBytes((PVOID)&input_char,appl_ptr,1))
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);
 rp->s.ReadWrite.count = 1; /* one byte read */
 return (RPDONE);

 case RPWRITE: /* 0x08 */
 rp->s.ReadWrite.count = 0;
 if (PhysToVirt((ULONG) rp->s.ReadWrite.buffer,
 1,0,&appl_ptr))
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);
 if (MoveBytes(appl_ptr,(PVOID)&output_char,1))
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);
 outp (DIGIO_OUTPUT,output_char); /* send byte */
 rp->s.ReadWrite.count = 1; /* one byte written */
 return (RPDONE);

 case RPOPEN: /* 0x0d open driver */
 /* get current process id */
 if (GetDOSVar(2,&ptr))
 return (RPDONE | RPERR | ERROR_BAD_COMMAND);
 /* get process info */
 liptr = *((PLINFOSEG *) ptr);
 /* if this device never opened, can be opened by anyone*/
 if (opencount == 0) /* first time this dev opened */
 {
 opencount=1; /* bump open counter */
 savepid = liptr->pidCurrent; /* save current PID */
 }
 else
 {
 if (savepid != liptr->pidCurrent) /* another proc */
 return (RPDONE | RPERR | ERROR_NOT_READY);/*err*/
 ++opencount; /* bump counter, same pid */
 }
 return (RPDONE);

 case RPCLOSE: /* 0x0e DosClose,ctl-C, kill */
 /* get process info of caller */
 if (GetDOSVar(2,&ptr))
 return (RPDONE | RPERR | ERROR_BAD_COMMAND);
 /* get process info from os/2 */
 liptr= *((PLINFOSEG *) ptr); /* ptr to linfoseg */
 /*
 make sure that process attempting to close this device
 is the one that originally opened it and the device was
 open in the first place.
 */
 if (savepid != liptr->pidCurrent || opencount == 0)
 return (RPDONE | RPERR | ERROR_BAD_COMMAND);
 --opencount; /* close counts down open cntr*/
 return (RPDONE); /* return 'done' status */

 case RPIOCTL: /* 0x10 */
 /*
 The function code in an IOCtl packet has the high bit set
 for the DIGIO$ board. We return all others with the done
 bit set so we don't have to handle things like the 5-48
 code page IOCtl
 */
 if (rp->s.IOCtl.category != DIGIO_CAT)/* other IOCtls */
 return (RPDONE | RPERR | ERROR_BAD_COMMAND);
 switch (rp->s.IOCtl.function)
 {
 case 0x01: /* write byte to digio port */
 /* verify caller owns this buffer area */
 if(VerifyAccess(
 SELECTOROF(rp->s.IOCtl.parameters), /* selector */
 OFFSETOF(rp->s.IOCtl.parameters), /* offset */
 1, /* 1 byte */
 0)} /* read only */

Copyright © 1997 Steven J. Mastrianni Page 102 3/30/2005

 return (RPDONE | RPERR | ERROR_GEN_FAILURE);
 if(MoveBytes(rp->s.IOCtl.parameters,(PVOID)
 &output_char,1))
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);
 outp(DIGIO_OUTPUT,output_char); /*send to digio*/
 return (RPDONE);

 case 0x02: /* read byte w/wait from port */
 /* verify caller owns this buffer area */
 if(VerifyAccess{
 SELECTOROF(rp->s.IOCtl.buffer), /* selector */
 OFFSETOF(rp->s.IOCtl.buffer), /* offset */
 1, /* 1 bytes) */
 0)) /* read only */
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 /* lock the segment down temp */
 if(LockSeg(
 SELECTOROF(rp->s.IOCtl.buffer), /* selector */
 1, /* lock forever */
 0, /* wait for seg loc*/
 (PLHANDLE) &lock_seg_han)) /* handle returned */
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);
 if(MoveBytes(rp->s.IOCtl.parameters,(PVOID)
 &input_mask,1))
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 /* wait for switch to be pressed */
 ReadID = (ULONG)rp; /* block ID */
 if (Block(ReadID,-1L,0,&err))
 if (err == 2)
 return(RPDONE | RPERR
 | ERROR_CHAR_CALL_INTERRUPTED);
 /* move data to users buffer */
 if(MoveBytes((PVOID)&input_char,rp->s.IOCtl.buffer,
 1))
 return(RPDONE | RPERR | ERROR_GEN_FAILURE);

 /* unlock segment */
 if(UnLockSeg(lock_seg_han))
 return(RPDONE | RPERR | ERROR_GEN_FAILURE);
 return (RPDONE);

 case 0x03: /* read byte immed digio port */
 /* verify caller owns this buffer area */
 if(VerifyAccess(
 SELECTOROF(rp->s.IOCtl.buffer), /* selector */
 OFFSETOF(rp->s.IOCtl.buffer), /* offset */
 4, /* 4 bytes */
 0)) /* read only */
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 input_char = inp(DIGIO_INPUT); /* get data */
 if(MoveBytes((PVOID)&input_char,rp->s.IOCtl.buffer,1))
 return(RPDONE | RPERR | ERROR_GEN_FAILURE);

 return (RPDONE);

 default:
 return(RPDONE | RPERR | ERROR_GEN_FAILURE);
 }

 /* don't allow deinstall */
 case RPDEINSTALL: /* 0x14 */
 return(RPDONE | RPERR | ERROR_BAD_COMMAND);

 /* all other commands are flagged as bad */
 default:
 return(RPDONE | RPERR | ERROR_BAD_COMMAND);
 }
}

Copyright © 1997 Steven J. Mastrianni Page 103 3/30/2005

timr_handler()
{
 if (ReadID != 0) {
 /* read data from port */
 input_char = inp(DIGIO_INPUT);/* get data */
 if ((input_char && input_mask) !=0) {
 Run (ReadID);
 ReadID=0L;
 }
 }
}

/* Device Initialization Routine */

int Init(PREQPACKET rp)
{
 /* store DevHlp entry point */
 DevHlp = rp->s.Init.DevHlp;
 /* install timer handler */
 if(SetTimer((PFUNCTION)timr_handler)) {
 /* if we failed, effectively deinstall driver with cs+ds=0 */
 DosPutMessage(1, 8, devhdr.DHname);
 DosPutMessage(1,strlen(FailMessage),FailMessage);
 rp->s.InitExit.finalCS = (OFFSET) 0;
 rp->s.InitExit.finalDS = (OFFSET) 0;
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);
 }

 /* configure 8255 parallel chip */
 outp (DIGIO_CONFIG,0x91);
 /* output initialization message */
 DosPutMessage(1, 2, CrLf);
 DosPutMessage(1, 8, devhdr.DHname);
 DosPutMessage(1, strlen(InitMessage1), InitMessage1);
 DosPutMessage(1, strlen(InitMessage2), InitMessage2);

 /* send back our code and data end values to os/2 */
 if (SegLimit(HIUSHORT((void *) Init),
 &rp->s.InitExit.finalCS) || SegLimit(HIUSHORT((void *)
 InitMessage2), &rp->s.InitExit.finalDS))
 Abort();
 return(RPDONE);
}

Figure A-5. Simple OS/2 parallel device driver, 32-bit version.

#include "drvlib.h"
#include "mmap.h"

extern void near STRATEGY(); // name of strat rout. in DDSTART

DEVICEHDR devhdr = {
 (void far *) 0xFFFFFFFF, // link
 (DAW_CHR | DAW_OPN | DAW_LEVEL1),// attribute
 (OFF) STRATEGY, // &strategy
 (OFF) 0, // &IDCroutine
 "MMAP$ "
};

FPFUNCTION DevHlp=0; // storage area for DevHlp calls
LHANDLE lock_seg_han; // handle for locking appl. segment
PHYSADDR appl_buffer=0; // address of caller's buffer
PREQPACKET p=0L; // pointer to request packet
ERRCODE err=0; // error return
void far *ptr; // temp far pointer
USHORT i,j; // general counters
PHYSADDR board_address; // base board address

Copyright © 1997 Steven J. Mastrianni Page 104 3/30/2005

USHORT opencount; // count of DosOpens
USHORT savepid; // save the caller's PID
USHORT cntr = 0; // misc counter
USHORT bus = 0; // default ISA bus
REQBLK ABIOS_r_blk; // ABIOS request block
LIDBLK ABIOS_l_blk; // ABIOS LID block
USHORT lid_blk_size; // size of LID block
CARD card[MAX_NUM_SLOTS+1]; // array for IDs
CARD *pcard; // pointer to card array
USHORT matches = 0; // match flag for card ID
POS_STRUCT pos_struct; // struct to get POS reg
ADDR_STRUCT addr_struct; // struct for passing addresses
USHORT chunk1,chunk2; // temp variables for address calc
char arguments[64]={0}; // save command line args in dgroup
char NoMatchMsg[] = " no match for selected Micro Channel
 card ID found.\r\n";
char MainMsgMCA[] = "\r\nOS/2 Micro Channel memory-mapped
 driver installed.\r\n";
char MainMsgISA[] = "\r\nOS/2 ISA bus memory-mapped driver
 installed.\r\n";

// prototypes
int hex2bin(char c);
USHORT get_POS();
UCHAR get_pos_data();
UCHAR nget_pos_data();

// common entry point for calls to Strategy routines

int main(PREQPACKET rp)
{
 void far *ptr;
 int far *pptr;
 PLINFOSEG liptr; // pointer to local info seg
 int i;
 ULONG addr;
 USHORT in_data;

 switch(rp->RPcommand)
 {
 case RPINIT: // 0x00
 // init called by kernel in protected mode ring 3 with IOPL
 return Init(rp);

 case RPOPEN: // 0x0d
 // get current processes id
 if (GetDOSVar(2,&ptr))
 return (RPDONE | RPERR | ERROR_BAD_COMMAND);
 // get process info
 liptr = *((PLINFOSEG far *) ptr);
 // if this device never opened, can be opened by any process
 if (opencount == 0) // first time this device opened
 {
 opencount=1; // set open counter
 savepid = liptr->pidCurrent; // save current process id
 }
 else
 {
 if (savepid != liptr->pidCurrent) // proc tried to open
 return (RPDONE | RPERR | RPBUSY); // so return error
 ++opencount; // bump counter, same pid
 }
 return (RPDONE);

 case RPCLOSE: // 0x0e
 // get process info of caller
 if (GetDOSVar(2,&ptr))
 return (RPDONE | RPERR | ERROR_BAD_COMMAND); // no info
 // get process info from os/2
 liptr= *((PLINFOSEG far *) ptr); // ptr to process info seg
 //
 // make sure that process attempting to close this device

Copyright © 1997 Steven J. Mastrianni Page 105 3/30/2005

 // one that originally opened it and the device was open in
 // first place.
 //
 if (savepid != liptr->pidCurrent || opencount == 0)
 return (RPDONE | RPERR | ERROR_BAD_COMMAND);
 // if an LDT selector was allocated, free it
 PhysToUVirt(board_address,0x8000,2,
 (FARPOINTER)&addr_struct.mapped_addr);
 --opencount; // close counts down open counter
 return (RPDONE); // return 'done' status to caller

 case RPREAD: // 0x04
 return(RPDONE);

 case RPWRITE: // 0x08
 return (RPDONE);

 case RPIOCTL: // 0x10
 if (rp->s.IOCtl.category != OUR_CAT) // only our category
 return (RPDONE);

 switch (rp->s.IOCtl.function)
 {
 // this IOCtl returns the bus type. If Micro Channel
 // the return is 0xff01. If ISA, the return is ff00

 case 0x01: // check if MCA or ISA
 return (RPDONE | RPERR | bus);

 // this IOCtl maps adapter mem to an LDT selector:offset,
 // and sends it to the application for direct reads
 // and writes

 case 0x02: // send memmapped addr to app
 // verify caller owns this buffer area
 if(VerifyAccess(
 SELECTOROF(rp->s.IOCtl.buffer), // selector
 OFFSETOF(rp->s.IOCtl.buffer), // offset
 8, // 8 bytes
 1)) // read write
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);
 // lock the segment down temp
 if(LockSeg(
 SELECTOROF(rp->s.IOCtl.buffer), // selector
 0, // lock < 2 sec
 0, // wait for seg lock
 (PLHANDLE) &lock_seg_han)) // handle returned
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 // map the board address to an LDT entry

 if (PhysToUVirt(board_address,0x8000,1,
 (FARPOINTER)&addr_struct.mapped_addr))
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 // move data to users buffer
 if(MoveBytes(
 &addr_struct, // source
 rp->s.IOCtl.buffer, // dest
 8)) // 8 bytes
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 // unlock segment
 if(UnLockSeg(lock_seg_han))
 return(RPDONE | RPERR | ERROR_GEN_FAILURE);
 return (RPDONE);

 // this IOCtl demonstrates how an application gets the
 // contents of a Micro Channel Adapter's POS registers

 case 0x03: // get pos reg data
 // verify caller owns this buffer area

Copyright © 1997 Steven J. Mastrianni Page 106 3/30/2005

 if(VerifyAccess(
 SELECTOROF(rp->s.IOCtl.buffer), // selector
 OFFSETOF(rp->s.IOCtl.buffer), // offset
 6, // 6 bytes
 1)) // read write
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 // lock the segment down temp
 if(LockSeg(
 SELECTOROF(rp->s.IOCtl.buffer), // selector
 0, // lock < 2 sec
 0, // wait for seg lock
 (PLHANDLE) &lock_seg_han)) // handle returned
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 // move slot data to driver buffer
 if(MoveBytes(
 (FARPOINTER) appl_buffer, // source
 &pos_struct, // for pos data
 6)) // 6 bytes
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);
 pos_struct.data =
 get_pos_data(pos_struct.slot,pos_struct.reg);
 // move POS reg data to users buffer
 if(MoveBytes(
 &pos_struct, // for pos data
 (FARPOINTER) appl_buffer, // source
 6)) // 6 bytes
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);
 // unlock segment
 if(UnLockSeg(lock_seg_han))
 return(RPDONE | RPERR | ERROR_GEN_FAILURE);
 return (RPDONE);

 // this IOCtl is the same as 0x02, except the
 // user virtual address is mapped to a lin address in the
 // process address range and then sent to the app. This
 // saves the SelToFlat and FlatToSel each time the ptr is
 // referenced.

 case 0x04: // 32-bit memory-mapped addr to app
 // verify caller owns this buffer area
 if(VerifyAccess(
 SELECTOROF(rp->s.IOCtl.buffer), // selector
 OFFSETOF(rp->s.IOCtl.buffer), // offset
 8, // 8 bytes
 1)) // read write
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);
 // lock the segment down temp
 if(LockSeg(
 SELECTOROF(rp->s.IOCtl.buffer), // selector
 0, // lock < 2 sec
 0, // wait for seg lock
 (PLHANDLE) &lock_seg_han)) // handle returned
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);
 // map the board address to an LDT entry
 if (PhysToUVirt(board_address,0x8000,1,
 (FARPOINTER) &addr_struct.mapped_addr))
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);
 // now convert it to a linear address
 if (VirtToLin((FARPOINTER)addr_struct.mapped_addr,
 (PLINADDR)&addr_struct.mapped_addr))
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);
 // move data to users buffer
 if(MoveBytes(
 &addr_struct, // source
 rp->s.IOCtl.buffer, // dest
 8)) // 8 bytes
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 // unlock segment
 if(UnLockSeg(lock_seg_han))

Copyright © 1997 Steven J. Mastrianni Page 107 3/30/2005

 return(RPDONE | RPERR | ERROR_GEN_FAILURE);
 return (RPDONE);
 } // switch (rp->s.IOCtl.function

 case RPDEINSTALL: // 0x14
 return(RPDONE | RPERR | ERROR_BAD_COMMAND);

 // all other commands are ignored
 default:
 return(RPDONE);
 }
}

int hex2bin(char c)
{
 if(c < 0x3a)
 return (c - 48);
 else
 return ((c & 0xdf) - 55);
}

USHORT get_POS(USHORT slot_num,
 USHORT far *card_ID,
 UCHAR far *pos_regs)
{
USHORT rc, i, lid;

 if (GetLIDEntry(0x10, 0, 1, &lid)) // get LID for POS
 return (1);

 // Get the size of the LID request block
 ABIOS_l_blk.f_parms.req_blk_len = sizeof(struct lid_block_def);
 ABIOS_l_blk.f_parms.LID = lid;
 ABIOS_l_blk.f_parms.unit = 0;;
 ABIOS_l_blk.f_parms.function = GET_LID_BLOCK_SIZE;
 ABIOS_l_blk.f_parms.ret_code = 0x5a5a;
 ABIOS_l_blk.f_parms.time_out = 0;
 if (ABIOSCall(lid,0,(void far *)&ABIOS_l_blk))
 return (1);
 lid_blk_size = ABIOS_l_blk.s_parms.blk_size; // Get block size
 // Fill POS regs and card ID with FF in case this does not work
 *card_ID = 0xFFFF;
 for (i=0; i<NUM_POS_BYTES; i++) { pos_regs[i] = 0x00; };
 // Get the POS registers and card ID for the commanded slot
 ABIOS_r_blk.f_parms.req_blk_len = lid_blk_size;
 ABIOS_r_blk.f_parms.LID = lid;
 ABIOS_r_blk.f_parms.unit = 0;;
 ABIOS_r_blk.f_parms.function = READ_POS_REGS_CARD;
 ABIOS_r_blk.f_parms.ret_code = 0x5a5a;
 ABIOS_r_blk.f_parms.time_out = 0;
 ABIOS_r_blk.s_parms.slot_num = (UCHAR)slot_num & 0x0F;
 ABIOS_r_blk.s_parms.pos_buf = (void far *)pos_regs;
 ABIOS_r_blk.s_parms.card_ID = 0xFFFF;
 if (ABIOSCall(lid,0,(void far *)&ABIOS_r_blk))
 rc = 1;
 else
 { // Else
 *card_ID = ABIOS_r_blk.s_parms.card_ID; // Set card ID value
 rc = 0;
 }
 FreeLIDEntry(lid);
 return(rc);
}

UCHAR get_pos_data (int slot, int reg)
{
 UCHAR pos;
 CARD *cptr;

 cptr = &card[slot-1]; // set ptr to card array
 if (reg == 0) // card ID
 pos = LOUSHORT(cptr->card_ID);

Copyright © 1997 Steven J. Mastrianni Page 108 3/30/2005

 else
 if (reg == 1)
 pos = HIUSHORT(cptr->card_ID);
 else
 pos = cptr->pos_regs[reg-2]; // POS data register
 return (pos);
}

// Device Initialization Routine

int Init(PREQPACKET rp)
{
 USHORT lid;
 register char far *p;

 // store DevHlp entry point
 DevHlp = rp->s.Init.DevHlp; // save DevHlp entry point
 if (!(GetLIDEntry(0x10, 0, 1, &lid)))
 { // get LID for POS
 FreeLIDEntry(lid);
 // Micro Channel (tm) setup section
 bus = 1; // MCA bus
 // Get POS data and card ID for each of 8 possible slots
 for (i=0;i <= MAX_NUM_SLOTS; i++)
 get_POS(i+1,(FARPOINTER)&card[i].card_ID,
 (FARPOINTER)card[i].pos_regs);
 matches = 0;
 for (i=0, pcard = card; i <= MAX_NUM_SLOTS; i++, pcard++)
 {
 if (pcard->card_ID == TARGET_ID)
 {
 matches = 1;
 break;
 }
 }
 if (matches == 0) { // at least one board found
 DosPutMessage(1, 8, devhdr.DHname);
 DosPutMessage(1,strlen(NoMatchMsg),NoMatchMsg);
 rp->s.InitExit.finalCS = (OFF) 0;
 rp->s.InitExit.finalDS = (OFF) 0;
 return (RPDONE | RPERR | ERROR_BAD_COMMAND);
 }
 // calculate the board address from the POS regs
 board_address = ((unsigned long) get_pos_data(i+1, 4)
 << 16) |((unsigned long)(get_pos_data(i+1, 3) & 1)
 << 15);
 }
 else
 // ISA bus setup
 {
 bus = 0; // ISA bus

 // get parameters, port addr and base mem addr
 for (p = rp->s.Init.args; *p && *p != ' ';++p);
 for (; *p == ' '; ++p); // skip blanks following name
 if (*p)
 {
 board_address=0; // i/o port address
 for (; *p != '\0'; ++p) // get board address
 board_address = (board_address << 4) + (hex2bin(*p));
 addr_struct.board_addr = board_address;
 }
 }
 if (bus)
 DosPutMessage(1,strlen(MainMsgMCA),MainMsgMCA);
 else
 DosPutMessage(1,strlen(MainMsgISA),MainMsgISA);

Copyright © 1997 Steven J. Mastrianni Page 109 3/30/2005

 // send back our cs and ds end values to os/2
 if (SegLimit(HIUSHORT((void far *) Init),
 &rp->s.InitExit.finalCS) ||
 SegLimit(HIUSHORT((void far *) MainMsgISA),
 &rp->s.InitExit.finalDS))
 Abort();
 Beep(200,500);
 Beep(200,500);
 Beep(250,500);
 Beep(300,500);
 Beep(250,500);
 Beep(300,500);
 return (RPDONE);
}

Figure A-6. Memory-mapped device driver, 16-bit version.

#include <stdio.h>
#include <string.h>
//
// OS/2 Device Driver for memory mapped I/O
//
// Steve Mastrianni
// 15 Great Oak Lane
// Unionville, CT 06085
// (203) 693-0404 voice
// (203) 693-9042 data
// CI$ 71501,1652
// BIX smastrianni
// Internet 6099225@mcimail.com
//
// This driver is loaded in the config.sys file with the DEVICE=
// statement. For ISA configuration, the first parameter to the "DEVICE="
// is the board base memory address in hex.
//
// This driver also returns a boolean to the calling application to
// inform it of the bus type (Micro Channel or ISA).
//
// All numbers are in hex. For MCA configuration, the board address
// is read from the board POS regs. The POS regs data is specific for
// each adapter, so the address calculations here may not work with
// your specific adapter. Refer to the hardware tech reference for the
// particular adapter to determine where and how the address appears
// in the POS registers.
//
//
// This driver allows the application I/O to run in Ring 2 with IOPL.
// The CONFIG.SYS files *must* contain the IOPL=YES statement.
//
// This driver supports 4 IOCtls, Category 0x90.
//
// IOCtl 0x01 test for MCA or ISA bus
// IOCtl 0x02 gets and returns a selector to fabricated board memory
// IOCtl 0x03 gets the value of a selected POS register
// IOCtl 0x04 gets the board address that the driver found
//
// The driver is made by using the make file mmap.mak.

#include "drvlib.h"
#include "mmap.h"

extern void STRATEGY(); // name of strat rout. in DDSTART

DEVICEHDR devhdr = {
 (void *) 0xFFFFFFFF, // link
 (DAW_CHR | DAW_OPN | DAW_LEVEL1),// attribute

Copyright © 1997 Steven J. Mastrianni Page 110 3/30/2005

 (OFF) STRATEGY, // &strategy
 (OFF) 0, // &IDCroutine
 "MMAP$ "
};

FPFUNCTION DevHlp=0; // storage area for DevHlp calls
LHANDLE lock_seg_han; // handle for locking appl. segment
PHYSADDR appl_buffer=0; // address of caller's buffer
PREQPACKET p=0L; // pointer to request packet
ERRCODE err=0; // error return
void *ptr; // temp pointer
USHORT i,j; // general counters
PHYSADDR board_address; // base board address
USHORT opencount; // count of DosOpens
USHORT savepid; // save the caller's PID
USHORT cntr = 0; // misc counter
USHORT bus = 0; // default ISA bus
REQBLK ABIOS_r_blk; // ABIOS request block
LIDBLK ABIOS_l_blk; // ABIOS LID block
USHORT lid_blk_size; // size of LID block
CARD card[MAX_NUM_SLOTS+1]; // array for IDs and POS reg values
CARD *pcard; // pointer to card array
USHORT matches = 0; // match flag for card ID
POS_STRUCT pos_struct; // struct to get POS reg
ADDR_STRUCT addr_struct; // struct for passing addresses
USHORT chunk1,chunk2; // temp variables for address calc

char arguments[64]={0}; // save command line args in dgroup
char NoMatchMsg[] = " no match for selected Micro Channel card ID
found.\r\n";
char MainMsgMCA[] = "\r\nOS/2 Micro Channel memory-mapped driver
installed.\r\n";
char MainMsgISA[] = "\r\nOS/2 ISA bus memory-mapped driver installed.\r\n";

// prototypes

int hex2bin(char c);
USHORT get_POS();
UCHAR get_pos_data();
UCHAR nget_pos_data();

// common entry point for calls to Strategy routines

int main(PREQPACKET rp)
{
 void *ptr;
 int *pptr;
 PLINFOSEG liptr; // pointer to local info seg
 int i;
 ULONG addr;
 USHORT in_data;

 switch(rp->RPcommand)
 {
 case RPINIT: // 0x00

 // init called by kernel in protected mode ring 3 with IOPL

 return Init(rp);

 case RPOPEN: // 0x0d

 // get current processes id

 if (GetDOSVar(2,&ptr))
 return (RPDONE | RPERR | ERROR_BAD_COMMAND);

 // get process info

 liptr = *((PLINFOSEG *) ptr);

 // if this device never opened, can be opened by any process

Copyright © 1997 Steven J. Mastrianni Page 111 3/30/2005

 if (opencount == 0) // first time this device opened
 {
 opencount=1; // set open counter
 savepid = liptr->pidCurrent; // save current process id
 }
 else
 {
 if (savepid != liptr->pidCurrent) // another proc tried to open
 return (RPDONE | RPERR | RPBUSY); // so return error
 ++opencount; // bump counter, same pid
 }
 return (RPDONE);

 case RPCLOSE: // 0x0e

 // get process info of caller

 if (GetDOSVar(2,&ptr))
 return (RPDONE | RPERR | ERROR_BAD_COMMAND); // no info

 // get process info from os/2

 liptr= *((PLINFOSEG *) ptr); // ptr to process info seg

 //
 // make sure that process attempting to close this device
 // one that originally opened it and the device was open in
 // first place.
 //

 if (savepid != liptr->pidCurrent || opencount == 0)
 return (RPDONE | RPERR | ERROR_BAD_COMMAND);

 // if an LDT selector was allocated, free it

 PhysToUVirt(board_address,0x8000,2,
 (FARPOINTER)&addr_struct.mapped_addr);

 --opencount; // close counts down open counter
 return (RPDONE); // return 'done' status to caller

 case RPREAD: // 0x04

 return(RPDONE);

 case RPWRITE: // 0x08

 return (RPDONE);

 case RPIOCTL: // 0x10

 if (rp->s.IOCtl.category != OUR_CAT) // only our category
 return (RPDONE);

 switch (rp->s.IOCtl.function)
 {

 // this IOCtl returns the bus type. If the type is Micro Channel
 // the return is 0xff01. If ISA, the return is ff00

 case 0x01: // check if MCA or ISA
 return (RPDONE | RPERR | bus);

 // this IOCtl maps an adapter memory to an LDT selector:offset,
 // and sends it to the application for direct application reads
 // and writes

 case 0x02: // send memory-mapped addr to app

 // verify caller owns this buffer area

Copyright © 1997 Steven J. Mastrianni Page 112 3/30/2005

 if(VerifyAccess(
 SELECTOROF(rp->s.IOCtl.buffer), // selector
 OFFSETOF(rp->s.IOCtl.buffer), // offset
 8, // 8 bytes
 1)) // read write
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 // lock the segment down temp

 if(LockSeg(
 SELECTOROF(rp->s.IOCtl.buffer), // selector
 0, // lock < 2 sec
 0, // wait for seg lock
 (PLHANDLE) &lock_seg_han)) // handle returned
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 // map the board address to an LDT entry

 if (PhysToUVirt(board_address,0x8000,1,
 (FARPOINTER)&addr_struct.mapped_addr))
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 // move data to users buffer

 if(MoveBytes(
 &addr_struct, // source
 rp->s.IOCtl.buffer, // dest
 8)) // 8 bytes
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 // unlock segment

 if(UnLockSeg(lock_seg_han))
 return(RPDONE | RPERR | ERROR_GEN_FAILURE);

 return (RPDONE);

 // this IOCtl demonstrates how an application program can get the
 // contents of a Micro Channel Adapter's POS registers

 case 0x03: // get pos reg data

 // verify caller owns this buffer area

 if(VerifyAccess(
 SELECTOROF(rp->s.IOCtl.buffer), // selector
 OFFSETOF(rp->s.IOCtl.buffer), // offset
 6, // 6 bytes
 1)) // read write
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 // lock the segment down temp

 if(LockSeg(
 SELECTOROF(rp->s.IOCtl.buffer), // selector
 0, // lock < 2 sec
 0, // wait for seg lock
 (PLHANDLE) &lock_seg_han)) // handle returned
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 // move slot data to driver buffer

 if(MoveBytes(
 (FARPOINTER) appl_buffer, // source
 &pos_struct, // for pos data
 6)) // 6 bytes
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 pos_struct.data = get_pos_data(pos_struct.slot,pos_struct.reg);

 // move POS reg data to users buffer

Copyright © 1997 Steven J. Mastrianni Page 113 3/30/2005

 if(MoveBytes(
 &pos_struct, // for pos data
 (FARPOINTER) appl_buffer, // source
 6)) // 6 bytes
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 // unlock segment

 if(UnLockSeg(lock_seg_han))

 return(RPDONE | RPERR | ERROR_GEN_FAILURE);

 return (RPDONE);

 // this IOCtl is essentially the same as 0x02, except the
 // user virtual address is mapped to a li address in the
 // process address range and then sent to the application. This
 // save the SelToFlat and FlatToSel each time the pointer is
 // referenced.

 case 0x04: // 32-bit memory-mapped addr to app

 // verify caller owns this buffer area

 if(VerifyAccess(
 SELECTOROF(rp->s.IOCtl.buffer), // selector
 OFFSETOF(rp->s.IOCtl.buffer), // offset
 8, // 8 bytes
 1)) // read write
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 // lock the segment down temp

 if(LockSeg(
 SELECTOROF(rp->s.IOCtl.buffer), // selector
 0, // lock < 2 sec
 0, // wait for seg lock
 (PLHANDLE) &lock_seg_han)) // handle returned
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 // map the board address to an LDT entry

 if (PhysToUVirt(board_address,0x8000,1,
 (FARPOINTER) &addr_struct.mapped_addr))
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 // now convert it to a li address

 if (VirtToLin((FARPOINTER)addr_struct.mapped_addr,

 (PLINADDR)&addr_struct.mapped_addr))
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 // move data to users buffer

 if(MoveBytes(
 &addr_struct, // source
 rp->s.IOCtl.buffer, // dest
 8)) // 8 bytes
 return (RPDONE | RPERR | ERROR_GEN_FAILURE);

 // unlock segment

 if(UnLockSeg(lock_seg_han))
 return(RPDONE | RPERR | ERROR_GEN_FAILURE);

 return (RPDONE);

 } // switch (rp->s.IOCtl.function

 case RPDEINSTALL: // 0x14

Copyright © 1997 Steven J. Mastrianni Page 114 3/30/2005

 return(RPDONE | RPERR | ERROR_BAD_COMMAND);

 // all other commands are ignored

 default:
 return(RPDONE);

 }
}

int hex2bin(char c)
{
 if(c < 0x3a)
 return (c - 48);
 else
 return ((c & 0xdf) - 55);
}

USHORT get_POS(USHORT slot_num,USHORT *card_ID,UCHAR *pos_regs)
{
USHORT rc, i, lid;

 if (GetLIDEntry(0x10, 0, 1, &lid)) // get LID for POS
 return (1);

 // Get the size of the LID request block

 ABIOS_l_blk.f_parms.req_blk_len = sizeof(struct lid_block_def);
 ABIOS_l_blk.f_parms.LID = lid;
 ABIOS_l_blk.f_parms.unit = 0;;
 ABIOS_l_blk.f_parms.function = GET_LID_BLOCK_SIZE;
 ABIOS_l_blk.f_parms.ret_code = 0x5a5a;
 ABIOS_l_blk.f_parms.time_out = 0;

 if (ABIOSCall(lid,0,(void *)&ABIOS_l_blk))
 return (1);

 lid_blk_size = ABIOS_l_blk.s_parms.blk_size; // Get the block size

 // Fill POS regs and card ID with FF in case this does not work

 *card_ID = 0xFFFF;
 for (i=0; i<NUM_POS_BYTES; i++) { pos_regs[i] = 0x00; };

 // Get the POS registers and card ID for the commanded slot

 ABIOS_r_blk.f_parms.req_blk_len = lid_blk_size;
 ABIOS_r_blk.f_parms.LID = lid;
 ABIOS_r_blk.f_parms.unit = 0;;
 ABIOS_r_blk.f_parms.function = READ_POS_REGS_CARD;
 ABIOS_r_blk.f_parms.ret_code = 0x5a5a;
 ABIOS_r_blk.f_parms.time_out = 0;

 ABIOS_r_blk.s_parms.slot_num = (UCHAR)slot_num & 0x0F;
 ABIOS_r_blk.s_parms.pos_buf = (void *)pos_regs;
 ABIOS_r_blk.s_parms.card_ID = 0xFFFF;

 if (ABIOSCall(lid,0,(void *)&ABIOS_r_blk))
 rc = 1;
 else { // Else
 *card_ID = ABIOS_r_blk.s_parms.card_ID; // Set the card ID value
 rc = 0;
 }
 FreeLIDEntry(lid);
 return(rc);

}

UCHAR get_pos_data (int slot, int reg)
{
 UCHAR pos;
 CARD *cptr;

Copyright © 1997 Steven J. Mastrianni Page 115 3/30/2005

 cptr = &card[slot-1]; // set pointer to beg of card array
 if (reg == 0) // card ID
 pos = LOUSHORT(cptr->card_ID);
 else
 if (reg == 1)
 pos = HIUSHORT(cptr->card_ID);
 else
 pos = cptr->pos_regs[reg-2]; // POS data register
 return (pos);
}

// Device Initialization Routine

int Init(PREQPACKET rp)
{
 USHORT lid;

 register char *p;

 // store DevHlp entry point

 DevHlp = rp->s.Init.DevHlp; // save DevHlp entry point

 if (!(GetLIDEntry(0x10, 0, 1, &lid))) { // get LID for POS
 FreeLIDEntry(lid);

 // Micro Channel (tm) setup section

 bus = 1; // MCA bus

 // Get the POS data and card ID for each of 8 possible slots

 for (i=0;i <= MAX_NUM_SLOTS; i++)
 get_POS(i+1,(FARPOINTER)&card[i].card_ID,(FARPOINTER)card[i].pos_regs);

 matches = 0;
 for (i=0, pcard = card; i <= MAX_NUM_SLOTS; i++, pcard++) {
 if (pcard->card_ID == TARGET_ID) {
 matches = 1;
 break;
 }
 }

 if (matches == 0) { // at least one board found
 DosPutMessage(1, 8, devhdr.DHname);
 DosPutMessage(1,strlen(NoMatchMsg),NoMatchMsg);
 rp->s.InitExit.finalCS = (OFF) 0;
 rp->s.InitExit.finalDS = (OFF) 0;
 return (RPDONE | RPERR | ERROR_BAD_COMMAND);
 }

 // calculate the board address from the POS regs

 board_address = ((unsigned long) get_pos_data(i+1, 4) << 16) |
 ((unsigned long)(get_pos_data(i+1, 3) & 1) << 15);
 }

 else

 // ISA bus setup

 {
 bus = 0; // ISA bus

 // get parameters, IRQ (not used yet), port addr and base mem addr

 for (p = rp->s.Init.args; *p && *p != ' ';++p);// skip driver name
 for (; *p == ' '; ++p); // skip blanks following driver name
 if (*p)
 {
 board_address=0; // i/o port address

Copyright © 1997 Steven J. Mastrianni Page 116 3/30/2005

 for (; *p != '\0'; ++p) // get board address
 board_address = (board_address << 4) + (hex2bin(*p));
 addr_struct.board_addr = board_address;
 }
 }

 if (bus)
 DosPutMessage(1,strlen(MainMsgMCA),MainMsgMCA);
 else
 DosPutMessage(1,strlen(MainMsgISA),MainMsgISA);

 // send back our cs and ds end values to os/2

 if (SegLimit(HIUSHORT((void *) Init), &rp->s.InitExit.finalCS) ||
 SegLimit(HIUSHORT((void *) MainMsgISA), &rp->s.InitExit.finalDS))
 Abort();

 Beep(200,500);
 Beep(200,500);
 Beep(250,500);
 Beep(300,500);
 Beep(250,500);
 Beep(300,500);

 return (RPDONE);

}

Figure A-7. Memory-mapped driver, 32-bit version.

/* file sample.c
 sample OS/2 serial device driver
*/

#include "drvlib.h"
#include "uart.h"
#include "serial.h"

extern void near STRAT(); /* name of strat rout.*/
extern void near TIM_HNDLR(); /* timer handler */
extern int near INT_HNDLR(); /* interrupt hand */

DEVICEHDR devhdr = {
 (void far *) 0xFFFFFFFF, /* link */
 (DAW_CHR | DAW_OPN | DAW_LEVEL1),/* attribute */
 (OFF) STRAT, /* &strategy */
 (OFF) 0, /* &IDCroutine */
 "DEVICE1 "
 };

CHARQUEUE rx_queue; /* receiver queue */
CHARQUEUE tx_queue; /* transmitter queue */
FPFUNCTION DevHlp=0; /* for DevHlp calls */
LHANDLE lock_seg_han; /* handle for locking*/
PHYSADDR appl_buffer=0; /* address of caller */
PREQPACKET p=0L; /* Request Packet ptr*/
ERRCODE err=0; /* error return */
void far *ptr; /* temp far pointer */
DEVICEHDR *hptr; /* pointer to Device */
USHORT i; /* general counter */
UARTREGS uart_regs; /* uart registers */
ULONG WriteID=0L; /* ID for write Block*/
ULONG ReadID=0L; /* ID for read Block */
PREQPACKET ThisReadRP=0L; /* for read Request */
PREQPACKET ThisWriteRP=0L;/* for write Request */
char inchar,outchar;/* temp chars */
USHORT baud_rate; /* current baud rate */
unsigned int savepid; /* PID of driver own */

Copyright © 1997 Steven J. Mastrianni Page 117 3/30/2005

UCHAR opencount; /* number of times */
ULONG tickcount; /* for timeouts */
unsigned int com_error_word; /* UART status */
USHORT port; /* port variable */
USHORT temp_bank; /* holds UART bank */
QUEUE rqueue; /* receive queue info*/

void near init();
void near enable_write();
void near disable_write();
void near set_dlab();
void near reset_dlab();
void near config_82050();

char IntFailMsg[] = " interrupt handler failed to install.\r\n";
char MainMsg[] = " OS/2 Serial Device Driver V1.0 installed.\r\n";

/* common entry point to strat routines */

int main(PREQPACKET rp, int dev)
{
 void far *ptr;
 int far *pptr;
 PLINFOSEG liptr; /* pointer to local info */
 int i;
 ULONG addr;

 switch(rp->RPcommand)
 {
 case RPINIT: /* 0x00 */

 /* init called by kernel in prot mode */

 return Init(rp,dev);

 case RPOPEN: /* 0x0d */

 /* get current processes id */

 if (GetDOSVar(2,&ptr))
 return (RPDONE|RPERR|ERROR_BAD_COMMAND);

 /* get process info */

 liptr = *((PLINFOSEG far *) ptr);

 /* if this device never opened */

 if (opencount == 0) /* 1st time dev op'd*/
 {
 ThisReadRP=0L;
 ThisWriteRP=0L;
 opencount=1; /* set open counter */
 savepid = liptr->pidCurrent; /* PID */
 QueueInit(&rx_queue);/* init driver */
 QueueInit(&tx_queue);
 }
 else
 {
 if (savepid != liptr->pidCurrent)
 return (RPDONE | RPERR | RPBUSY);
 ++opencount; /* bump counter */
 }
 return (RPDONE);

 case RPCLOSE: /* 0x0e */

 /* get process info of caller */

 if (GetDOSVar(2,&ptr))
 return (RPDONE|RPERR|ERROR_BAD_COMMAND); /* no info */

Copyright © 1997 Steven J. Mastrianni Page 118 3/30/2005

 /* get process info from os/2 */

 liptr= *((PLINFOSEG far *) ptr); /* PID */
 if (savepid != liptr->pidCurrent ||
 opencount == 0)
 return (RPDONE|RPERR|ERROR_BAD_COMMAND);
 --opencount; /* close counts down open*/

 if (ThisReadRP !=0 && opencount == 0) {
 Run((ULONG) ThisReadRP); /* dangling*/
 ThisReadRP=0L;
 }
 return (RPDONE); /* return 'done' */

 case RPREAD: /* 0x04 */

 /* Try to read a character */

 ThisReadRP = rp;
 if (opencount == 0)/* drvr was closed */
 {
 rp->s.ReadWrite.count = 0; /* EOF */
 return(RPDONE);
 }
 com_error_word=0;/* start off no errors */
 ReadID = (ULONG) rp;
 if (Block(ReadID, -1L, 0, &err))
 if (err == 2) /* interrupted */
 return(RPDONE|RPERR|ERROR_CHAR_CALL_INTERRUPTED);

 if (rx_queue.qcount == 0) {
 rp->s.ReadWrite.count=0;
 return (RPDONE|RPERR|ERROR_NOT_READY);
 }

 i=0;
 do {
 if (MoveData((FARPOINTER)&inchar,
 (FARPOINTER) (rp->s.ReadWrite.buffer+i),
 1,
 MOVE_VIRTTOPHYS))
 return(RPDONE|RPERR|ERROR_GEN_FAILURE);
 }
 while (++i < rp->s.ReadWrite.count
 && !QueueRead(&rx_queue,&inchar));
 rp->s.ReadWrite.count = i;
 QueueInit(&rx_queue);
 return(rp->RPstatus);

 case RPWRITE: /* 0x08 */

 ThisWriteRP = rp;

 /* transfer characters from user buffer */

 addr=rp->s.ReadWrite.buffer;/* get addr */
 for (i = rp->s.ReadWrite.count; i; --i,++addr)
 {
 if (MoveData((FARPOINTER)addr,
 (FARPOINTER)&outchar,
 1,
 MOVE_PHYSTOVIRT))
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

 if (QueueWrite(&tx_queue,outchar))
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);
 }
 WriteID = (ULONG) rp;
 enable_write();

 if (Block(WriteID, -1L, 0, &err))
 if (err == 2) /* interrupted */

Copyright © 1997 Steven J. Mastrianni Page 119 3/30/2005

 return(RPDONE|RPERR|ERROR_CHAR_CALL_INTERRUPTED);

 tickcount=MIN_TIMEOUT; /* reset timeout */
 QueueInit(&tx_queue);
 return (rp->RPstatus);

 case RPINPUT_FLUSH: /* 0x07 */

 QueueFlush(&rx_queue);
 return (RPDONE);

 case RPOUTPUT_FLUSH: /* 0x0b */

 QueueFlush(&tx_queue);
 return (RPDONE);

 case RPIOCTL: /* 0x10 */

 if (!((rp->s.IOCtl.category == SAMPLE_CAT)
 || (rp->s.IOCtl.category == 0x01)))
 return (RPDONE);

 switch (rp->s.IOCtl.function)
 {
 case 0x41: /* set baud rate */
 /* set baud rate to 1.2, 2.4, 9.6, 19.2 */
 /* verify caller owns the buffer area */

 if(VerifyAccess(
 SELECTOROF(rp->s.IOCtl.parameters),
 OFFSETOF(rp->s.IOCtl.parameters),
 2, /* two bytes */
 1)) /* read/write */
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

 /* lock the segment down temp */

 if(LockSeg(
 SELECTOROF(rp->s.IOCtl.parameters),
 0, /* lock for < 2 sec */
 0, /* wait for seg lock */
 (PLHANDLE) &lock_seg_han)) /* handle */
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

 /* get physical address of buffer */
 if (VirtToPhys(
 (FARPOINTER) rp->s.IOCtl.parameters,
 (FARPOINTER) &appl_buffer))
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

 /* move data to local driver buffer */

 if(MoveData(
 (FARPOINTER) appl_buffer, /* source */
 (FARPOINTER)&baud_rate, /* destination */
 2, /* 2 bytes */
 MOVE_PHYSTOVIRT))
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

 if (UnPhysToVirt()) /* release selector*/
 return(RPDONE|RPERR|ERROR_GEN_FAILURE);

 /* unlock segment */

 if(UnLockSeg(lock_seg_han))
 return(RPDONE|RPERR|ERROR_GEN_FAILURE);

 switch (baud_rate)
 {
 case 1200:

 uart_regs.Bal=0xe0;

Copyright © 1997 Steven J. Mastrianni Page 120 3/30/2005

 uart_regs.Bah=0x01;
 break;

 case 2400:

 uart_regs.Bal=0xf0;
 uart_regs.Bah=0x00;
 break;

 case 9600:

 uart_regs.Bal=0x3c;
 uart_regs.Bah=0x00;
 break;

 case 19200:

 uart_regs.Bal=0x1e;
 uart_regs.Bah=0x00;
 break;

 case 38400:

 uart_regs.Bal=0x0f;
 uart_regs.Bah=0x00;
 break;

error:
 return (RPDONE|RPERR|ERROR_BAD_COMMAND);

 }
 init(); /* reconfigure uart */
 return (RPDONE);

 case 0x68: /* get number of chars */

 /* verify caller owns the buffer */

 if(VerifyAccess(
 SELECTOROF(rp->s.IOCtl.buffer),
 OFFSETOF(rp->s.IOCtl.buffer),
 4, /* 4 bytes */
 1)) /* read/write */
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

 /* lock the segment down temp */

 if(LockSeg(
 SELECTOROF(rp->s.IOCtl.buffer),
 0, /* lock for < 2 sec */
 0, /* wait for seg lock */
 (PLHANDLE) &lock_seg_han)) /* handle*/
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

 /* get physical address of buffer */

 if (VirtToPhys(
 (FARPOINTER) rp->s.IOCtl.buffer,
 (FARPOINTER) &appl_buffer))
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

 rqueue.cch=rx_queue.qcount;
 rqueue.cb=rx_queue.qsize;

 /* move data to local driver buffer */

 if(MoveData(
 (FARPOINTER)&rx_queue, /* source */
 (FARPOINTER) appl_buffer, /* dest */
 4, /* 4 bytes */
 MOVE_PHYSTOVIRT))
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

Copyright © 1997 Steven J. Mastrianni Page 121 3/30/2005

 if (UnPhysToVirt())
 return(RPDONE|RPERR|ERROR_GEN_FAILURE);

 /* unlock segment */

 if(UnLockSeg(lock_seg_han))
 return(RPDONE|RPERR|ERROR_GEN_FAILURE);

 return (RPDONE);

 case 0x6d: /* get COM error info */

 /* verify caller owns the buffer */

 if(VerifyAccess(
 SELECTOROF(rp->s.IOCtl.buffer),
 OFFSETOF(rp->s.IOCtl.buffer),
 2, /* two bytes */
 1)) /* read/write */
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

 /* lock the segment down temp */

 if(LockSeg(
 SELECTOROF(rp->s.IOCtl.buffer),
 0, /* lock for < 2 sec */
 0, /* wait for seg lock */
 (PLHANDLE) &lock_seg_han)) /* handle*/
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

 /* get physical address of buffer */

 if (VirtToPhys(
 (FARPOINTER) rp->s.IOCtl.buffer,
 (FARPOINTER) &appl_buffer))
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

 /* move data to application buffer */

 if(MoveData(
 (FARPOINTER)&com_error_word, /* source */
 (FARPOINTER) appl_buffer, /* dest */
 2, /* 2 bytes */
 MOVE_VIRTTOPHYS))
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

 if (UnPhysToVirt())
 return(RPDONE|RPERR|ERROR_GEN_FAILURE);

 /* unlock segment */

 if(UnLockSeg(lock_seg_han))
 return(RPDONE|RPERR|ERROR_GEN_FAILURE);

 return (RPDONE);

 default:
 return(RPDONE|RPERR|ERROR_GEN_FAILURE);
 }

 /* don't allow deinstall */

 case RPDEINSTALL: /* 0x14 */
 return(RPDONE|RPERR|ERROR_BAD_COMMAND);

 /* all other commands are ignored */

 default:
 return(RPDONE);

 }

Copyright © 1997 Steven J. Mastrianni Page 122 3/30/2005

}

void enable_write()

/* enable write interrupts on uart */

{
 int port;
 int reg_val;

 port=UART_PORT_ADDRESS;
 reg_val=inp(port+2) & 0x60;
 set_bank(00);
 outp((port+1),inp(port+1) | 0x12);
 outp((port+2),reg_val);

}
void disable_write()

/* turn off write interrupts on uart */

{
 int port;
 int reg_val;

 port=UART_PORT_ADDRESS;
 reg_val=inp(port+2) & 0x60;
 set_bank(00);
 outp((port+1),inp(port+1) & 0xed);
 outp((port+2),reg_val);

}

void init ()

/* intializes software and configures 82050 */

{
 config_82050 (); /* Configure 82050 */
 set_bank(01);
}

void config_82050()

/* Configure the 82050 */

{
 int port;
 int inval;

 Disable(); /* disable interrupts */
 port=UART_PORT_ADDRESS;

 /* set stick bit */

 set_bank(01); /* stick bit */
 outp((port+7),0x10); /* reset port */
 outp ((port+1), uart_regs.Txf); /* stick bit */

 set_bank (02); /* general config */
 outp ((port + 4), uart_regs.Imd); /*auto rupt */
 outp ((port + 7), uart_regs.Rmd);
 outp ((port + 5), uart_regs.Acr1); /* cntl-z */
 outp ((port + 3), uart_regs.Tmd); /* no 9 bit */
 outp ((port + 1), uart_regs.Fmd); /* rx fifo */
 outp ((port + 6), uart_regs.Rie); /* enable */

 set_bank (03); /* modemconfiguration */

 outp ((port + 0), uart_regs.Clcf); /* clock */
 set_dlab (03); /* */
 outp ((port + 0), uart_regs.Bbl); /* BRGB lsb */

Copyright © 1997 Steven J. Mastrianni Page 123 3/30/2005

 outp ((port + 1), uart_regs.Bbh); /* BRGB msb */
 reset_dlab (03); /* */
 outp ((port + 3), uart_regs.Bbcf); /* BRGB */
 outp ((port + 6), uart_regs.Tmie); /* timer b */

 set_bank (00); /* general cfg */
 outp ((port + 1), uart_regs.Ger); /* enable */
 outp ((port + 3), uart_regs.Lcr); /* 8 bit */
 outp ((port + 7), uart_regs.Acr0); /* CR */
 outp ((port + 4), uart_regs.Mcr_0); /* no DTR */
 set_dlab (00); /* */
 outp ((port + 0), uart_regs.Bal); /* BRGA lsb */
 outp ((port + 1), uart_regs.Bah); /* BRGA msb */
 reset_dlab (00);
 set_bank(01);

 Enable(); /* turn on */
}

void set_dlab (bank)

/* Set DLAB bit to allow access to divisior registers */

int bank;
{
 int inval;
 int port;

 port=UART_PORT_ADDRESS;
 set_bank (00);
 inval=inp(port +3);
 inval =inval | 0x80; /* set dlab in LCR */
 outp ((port+3),inval);
 set_bank (bank);
}

getsrc()

{
 int v,src;
 int port;

 port=UART_PORT_ADDRESS; /* get base address */
 v=inp(port+2); /* get data */
 src=v & 0x0e; /* mask bits */
 src=src/2; /* divide by 2 */
 return(src); /* and pass it back */
}

set_bank(bank_num)

/* set bank of 82050 uart */

int bank_num;

{
 int reg_val;
 int port;

 reg_val=bank_num*0x20; /* select bank numb */
 port=UART_PORT_ADDRESS; /* get real port */
 outp(port+gir_addr,reg_val); /* output */
}

void reset_dlab (bank)

/* Reset DLAB bit of LCR */

int bank;

{
 int inval;

Copyright © 1997 Steven J. Mastrianni Page 124 3/30/2005

 int port;

 port=UART_PORT_ADDRESS;
 set_bank (00);
 inval=inp (port +3);
 inval = (inval & 0x7f); /* dlab = 0 in LCR */
 outp ((port+3),inval);
 set_bank (bank);
}

/* 82050 interrupt handler */

void interrupt_handler ()
{
 int rupt_dev;
 int source;
 int cmd_b;
 int st_b;
 int port;
 int temp;
 int rxlevel;

 port=UART_PORT_ADDRESS;
 outp((port+2),0x20); /* switch to bank 1 */
 source = getsrc (); /* get vector */
 switch (source)
 {

 /* optional timer service routine */

 case timer :

 st_b=inp (port+3); /* dec transmit count */
 if (ThisReadRP == 0) /* nobody waiting */
 break;
 ThisReadRP->RPstatus=(RPDONE|RPERR|ERROR_NOT_READY);
 Run ((ULONG) ThisWriteRP); /* run thread */
 ThisWriteRP=0;
 break;

 case txm :
 case txf :

 /* spurious write interrupt */

 if (ThisWriteRP == 0) {
 temp=inp(port+2);
 break;
 }

 /* keep transmitting until no data left */

 if (!(QueueRead(&tx_queue,&outchar)))
 {
 outp((port), outchar);
 tickcount=MIN_TIMEOUT;
 break;
 }

 /* done writing, run blocked thread */

 tickcount=MIN_TIMEOUT;
 disable_write();
 ThisWriteRP->RPstatus = (RPDONE);
 Run ((ULONG) ThisWriteRP);
 ThisWriteRP=0;
 break;

 case ccr :

 /* control character, treat as normal */

Copyright © 1997 Steven J. Mastrianni Page 125 3/30/2005

 inchar=inp(port+5);

 case rxf :

 /* rx fifo service routine */

 if (ThisReadRP == 0)
 inchar=inp (port); /* get character */
 else
 {
 temp=inp(port+4);
 rxlevel=(temp & 0x70) / 0x10;

 /* empty out chip FIFO */

 while (rxlevel !=0) {

 inchar=inp (port); /* get character */
 rxlevel--;
 tickcount=MIN_TIMEOUT;

 /* write input data to queue */

 if(QueueWrite(&rx_queue,inchar))

 /* error, queue must be full */

 {
 ThisReadRP->RPstatus=(RPDONE|RPERR|ERROR_GEN_FAILURE);
 Run ((ULONG) ThisReadRP);
 ThisReadRP=0;
 break;
 }
 com_error_word |= inp(port+5);

 } /* while rxlevel */
 } /* else */
 } /* switch (source) */
 EOI(5);
}
void timer_handler()
{
 if (ThisReadRP == 0)
 return;

 tickcount--;
 if(tickcount == 0) {
 ThisReadRP->RPstatus=(RPDONE);
 Run ((ULONG) ThisReadRP);
 ThisReadRP=0L;
 tickcount=MIN_TIMEOUT;
 }
}

/* Device Initialization Routine */

int Init(PREQPACKET rp, int dev)
{
 register char far *p;

 /* store DevHlp entry point */

 DevHlp = rp->s.Init.DevHlp;

 /* install interrupt hook in vector */

 if (SetTimer((PFUNCTION)TIM_HNDLR))
 goto fail;

 rx_queue.qsize=QUEUE_SIZE;
 tx_queue.qsize=QUEUE_SIZE; /* init queue */

Copyright © 1997 Steven J. Mastrianni Page 126 3/30/2005

 init(); /* init the port */
 tickcount=MIN_TIMEOUT; /* set timeout */

 if(SetIRQ(5,(PFUNCTION)INT_HNDLR,0)) {

 /* if we failed, deinstall driver cs+ds=0 */
fail:
 DosPutMessage(1, 8, devhdr.DHname);
 DosPutMessage (1,strlen(IntFailMsg),IntFailMsg);
 rp->s.InitExit.finalCS = (OFF) 0;
 rp->s.InitExit.finalDS = (OFF) 0;
 return (RPDONE | RPERR | ERROR_BAD_COMMAND);
 }

/* output initialization message */

DosPutMessage(1, 8, devhdr.DHname);
DosPutMessage(1, strlen(MainMsg), MainMsg);

/* send back our cs and ds values to os/2 */

if (SegLimit(HIUSHORT((void far *) Init),&rp->s.InitExit.finalCS)
 || SegLimit(HIUSHORT((void far *) MainMsg),
 &rp->s.InitExit.finalDS))
 Abort();
 return(RPDONE);
}

Figure A-8. Serial device driver, 16-bit version.

/* file sample.c
 sample OS/2 serial device driver
*/

#include "drvlib.h"
#include "uart.h"
#include "serial.h"
#include <stdio.h>

int main (PREQPACKET rp, int d);

DEVICEHDR devhdr = {
 (void *) 0xFFFFFFFF, /* link */
 (DAW_CHR | DAW_OPN | DAW_LEVEL1),/* attribute */
 &main, /* &strategy */
 0, /* &IDCroutine */
 "DEVICE1 "
 };

CHARQUEUE rx_queue; /* receiver queue */
CHARQUEUE tx_queue; /* transmitter queue */
PFUNCTION DevHlp=0; /* for DevHlp calls */
LHANDLE lock_seg_han; /* handle for locking*/
PHYSADDR appl_buffer=0; /* address of caller */
PREQPACKET p=0L; /* Request Packet ptr*/
ERRCODE err=0; /* error return */
void *ptr; /* temp pointer */
DEVICEHDR *hptr; /* pointer to Device */
USHORT i; /* general counter */
UARTREGS uart_regs; /* uart registers */
ULONG WriteID=0L; /* ID for write Block*/
ULONG ReadID=0L; /* ID for read Block */
PREQPACKET ThisReadRP=0L; /* for read Request */
PREQPACKET ThisWriteRP=0L;/* for write Request */
char inchar,outchar;/* temp chars */
USHORT baud_rate; /* current baud rate */

Copyright © 1997 Steven J. Mastrianni Page 127 3/30/2005

unsigned int savepid; /* PID of driver own */
UCHAR opencount; /* number of times */
ULONG tickcount; /* for timeouts */
unsigned int com_error_word; /* UART status */
USHORT port; /* port variable */
USHORT temp_bank; /* holds UART bank */
QUEUE rqueue; /* receive queue info*/

void init();
void enable_write();
void disable_write();
void set_dlab();
void reset_dlab();
void config_82050();

char IntFailMsg[] = " interrupt handler failed to install.\r\n";
char MainMsg[] = " OS/2 Serial Device Driver V1.0 installed.\r\n";

/* common entry point to strat routines */

int main(PREQPACKET rp, int dev)
{
 void *ptr;
 int *pptr;
 PLINFOSEG liptr; /* pointer to local info */
 int i;
 ULONG addr;

 switch(rp->RPcommand)
 {
 case RPINIT: /* 0x00 */

 /* init called by kernel in prot mode */

 return Init(rp,dev);

 case RPOPEN: /* 0x0d */

 /* get current processes id */

 if (GetDOSVar(2,&ptr))
 return (RPDONE|RPERR|ERROR_BAD_COMMAND);

 /* get process info */

 liptr = *((PLINFOSEG *) ptr);

 /* if this device never opened */

 if (opencount == 0) /* 1st time dev op'd*/
 {
 ThisReadRP=0L;
 ThisWriteRP=0L;
 opencount=1; /* set open counter */
 savepid = liptr->pidCurrent; /* PID */
 QueueInit(&rx_queue);/* init driver */
 QueueInit(&tx_queue);
 }
 else
 {
 if (savepid != liptr->pidCurrent)
 return (RPDONE | RPERR | RPBUSY);
 ++opencount; /* bump counter */
 }
 return (RPDONE);

 case RPCLOSE: /* 0x0e */

 /* get process info of caller */

 if (GetDOSVar(2,&ptr))
 return (RPDONE|RPERR|ERROR_BAD_COMMAND); /* no info */

Copyright © 1997 Steven J. Mastrianni Page 128 3/30/2005

 /* get process info from os/2 */

 liptr= *((PLINFOSEG *) ptr); /* PID */
 if (savepid != liptr->pidCurrent ||
 opencount == 0)
 return (RPDONE|RPERR|ERROR_BAD_COMMAND);
 --opencount; /* close counts down open*/

 if (ThisReadRP !=0 && opencount == 0) {
 Run((ULONG) ThisReadRP); /* dangling*/
 ThisReadRP=0L;
 }
 return (RPDONE); /* return 'done' */

 case RPREAD: /* 0x04 */

 /* Try to read a character */

 ThisReadRP = rp;
 if (opencount == 0)/* drvr was closed */
 {
 rp->s.ReadWrite.count = 0; /* EOF */
 return(RPDONE);
 }
 com_error_word=0;/* start off no errors */
 ReadID = (ULONG) rp;
 if (Block(ReadID, -1L, 0, &err))
 if (err == 2) /* interrupted */
 return(RPDONE|RPERR|ERROR_CHAR_CALL_INTERRUPTED);

 if (rx_queue.qcount == 0) {
 rp->s.ReadWrite.count=0;
 return (RPDONE|RPERR|ERROR_NOT_READY);
 }

 i=0;
 do {
 if (MoveData((PVOID)&inchar,
 (PVOID) (rp->s.ReadWrite.buffer+i),
 1,
 MOVE_VIRTTOPHYS))
 return(RPDONE|RPERR|ERROR_GEN_FAILURE);
 }
 while (++i < rp->s.ReadWrite.count
 && !QueueRead(&rx_queue,&inchar));
 rp->s.ReadWrite.count = i;
 QueueInit(&rx_queue);
 return(rp->RPstatus);

 case RPWRITE: /* 0x08 */

 ThisWriteRP = rp;

 /* transfer characters from user buffer */

 addr=rp->s.ReadWrite.buffer;/* get addr */
 for (i = rp->s.ReadWrite.count; i; --i,++addr)
 {
 if (MoveData((PVOID)addr,
 (PVOID)&outchar,
 1,
 MOVE_PHYSTOVIRT))
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

 if (QueueWrite(&tx_queue,outchar))
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);
 }
 WriteID = (ULONG) rp;
 enable_write();

 if (Block(WriteID, -1L, 0, &err))

Copyright © 1997 Steven J. Mastrianni Page 129 3/30/2005

 if (err == 2) /* interrupted */
 return(RPDONE|RPERR|ERROR_CHAR_CALL_INTERRUPTED);

 tickcount=MIN_TIMEOUT; /* reset timeout */
 QueueInit(&tx_queue);
 return (rp->RPstatus);

 case RPINPUT_FLUSH: /* 0x07 */

 QueueFlush(&rx_queue);
 return (RPDONE);

 case RPOUTPUT_FLUSH: /* 0x0b */

 QueueFlush(&tx_queue);
 return (RPDONE);

 case RPIOCTL: /* 0x10 */

 if (!((rp->s.IOCtl.category == SAMPLE_CAT)
 || (rp->s.IOCtl.category == 0x01)))
 return (RPDONE);

 switch (rp->s.IOCtl.function)
 {
 case 0x41: /* set baud rate */
 /* set baud rate to 1.2, 2.4, 9.6, 19.2 */
 /* verify caller owns the buffer area */

 if(VerifyAccess(
 SELECTOROF(rp->s.IOCtl.parameters),
 OFFSETOF(rp->s.IOCtl.parameters),
 2, /* two bytes */
 1)) /* read/write */
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

 /* lock the segment down temp */

 if(LockSeg(
 SELECTOROF(rp->s.IOCtl.parameters),
 0, /* lock for < 2 sec */
 0, /* wait for seg lock */
 (PLHANDLE) &lock_seg_han)) /* handle */
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

 /* get physical address of buffer */
 if (VirtToPhys(
 (PVOID) rp->s.IOCtl.parameters,
 (PVOID) &appl_buffer))
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

 /* move data to local driver buffer */

 if(MoveData(
 (PVOID) appl_buffer, /* source */
 (PVOID)&baud_rate, /* destination */
 2, /* 2 bytes */
 MOVE_PHYSTOVIRT))
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

 if (UnPhysToVirt()) /* release selector*/
 return(RPDONE|RPERR|ERROR_GEN_FAILURE);

 /* unlock segment */

 if(UnLockSeg(lock_seg_han))
 return(RPDONE|RPERR|ERROR_GEN_FAILURE);

 switch (baud_rate)
 {
 case 1200:

Copyright © 1997 Steven J. Mastrianni Page 130 3/30/2005

 uart_regs.Bal=0xe0;
 uart_regs.Bah=0x01;
 break;

 case 2400:

 uart_regs.Bal=0xf0;
 uart_regs.Bah=0x00;
 break;

 case 9600:

 uart_regs.Bal=0x3c;
 uart_regs.Bah=0x00;
 break;

 case 19200:

 uart_regs.Bal=0x1e;
 uart_regs.Bah=0x00;
 break;

 case 38400:

 uart_regs.Bal=0x0f;
 uart_regs.Bah=0x00;
 break;

error:
 return (RPDONE|RPERR|ERROR_BAD_COMMAND);

 }
 init(); /* reconfigure uart */
 return (RPDONE);

 case 0x68: /* get number of chars */

 /* verify caller owns the buffer */

 if(VerifyAccess(
 SELECTOROF(rp->s.IOCtl.buffer),
 OFFSETOF(rp->s.IOCtl.buffer),
 4, /* 4 bytes */
 1)) /* read/write */
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

 /* lock the segment down temp */

 if(LockSeg(
 SELECTOROF(rp->s.IOCtl.buffer),
 0, /* lock for < 2 sec */
 0, /* wait for seg lock */
 (PLHANDLE) &lock_seg_han)) /* handle*/
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

 /* get physical address of buffer */

 if (VirtToPhys(
 (PVOID) rp->s.IOCtl.buffer,
 (PVOID) &appl_buffer))
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

 rqueue.cch=rx_queue.qcount;
 rqueue.cb=rx_queue.qsize;

 /* move data to local driver buffer */

 if(MoveData(
 (PVOID)&rx_queue, /* source */
 (PVOID) appl_buffer, /* dest */
 4, /* 4 bytes */
 MOVE_PHYSTOVIRT))

Copyright © 1997 Steven J. Mastrianni Page 131 3/30/2005

 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

 if (UnPhysToVirt())
 return(RPDONE|RPERR|ERROR_GEN_FAILURE);

 /* unlock segment */

 if(UnLockSeg(lock_seg_han))
 return(RPDONE|RPERR|ERROR_GEN_FAILURE);

 return (RPDONE);

 case 0x6d: /* get COM error info */

 /* verify caller owns the buffer */

 if(VerifyAccess(
 SELECTOROF(rp->s.IOCtl.buffer),
 OFFSETOF(rp->s.IOCtl.buffer),
 2, /* two bytes */
 1)) /* read/write */
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

 /* lock the segment down temp */

 if(LockSeg(
 SELECTOROF(rp->s.IOCtl.buffer),
 0, /* lock for < 2 sec */
 0, /* wait for seg lock */
 (PLHANDLE) &lock_seg_han)) /* handle*/
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

 /* get physical address of buffer */

 if (VirtToPhys(
 (PVOID) rp->s.IOCtl.buffer,
 (PVOID) &appl_buffer))
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

 /* move data to application buffer */

 if(MoveData(
 (PVOID)&com_error_word, /* source */
 (PVOID) appl_buffer, /* dest */
 2, /* 2 bytes */
 MOVE_VIRTTOPHYS))
 return (RPDONE|RPERR|ERROR_GEN_FAILURE);

 if (UnPhysToVirt())
 return(RPDONE|RPERR|ERROR_GEN_FAILURE);

 /* unlock segment */

 if(UnLockSeg(lock_seg_han))
 return(RPDONE|RPERR|ERROR_GEN_FAILURE);

 return (RPDONE);

 default:
 return(RPDONE|RPERR|ERROR_GEN_FAILURE);
 }

 /* don't allow deinstall */

 case RPDEINSTALL: /* 0x14 */
 return(RPDONE|RPERR|ERROR_BAD_COMMAND);

 /* all other commands are ignored */

 default:
 return(RPDONE);

Copyright © 1997 Steven J. Mastrianni Page 132 3/30/2005

 }
}

void enable_write()

/* enable write interrupts on uart */

{
 int port;
 int reg_val;

 port=UART_PORT_ADDRESS;
 reg_val=inp(port+2) & 0x60;
 set_bank(00);
 outp((port+1),inp(port+1) | 0x12);
 outp((port+2),reg_val);

}
void disable_write()

/* turn off write interrupts on uart */

{
 int port;
 int reg_val;

 port=UART_PORT_ADDRESS;
 reg_val=inp(port+2) & 0x60;
 set_bank(00);
 outp((port+1),inp(port+1) & 0xed);
 outp((port+2),reg_val);

}

void init ()

/* intializes software and configures 82050 */

{
 config_82050 (); /* Configure 82050 */
 set_bank(01);
}

void config_82050()

/* Configure the 82050 */

{
 int port;
 int inval;

 Disable(); /* disable interrupts */
 port=UART_PORT_ADDRESS;

 /* set stick bit */

 set_bank(01); /* stick bit */
 outp((port+7),0x10); /* reset port */
 outp ((port+1), uart_regs.Txf); /* stick bit */

 set_bank (02); /* general config */
 outp ((port + 4), uart_regs.Imd); /*auto rupt */
 outp ((port + 7), uart_regs.Rmd);
 outp ((port + 5), uart_regs.Acr1); /* cntl-z */
 outp ((port + 3), uart_regs.Tmd); /* no 9 bit */
 outp ((port + 1), uart_regs.Fmd); /* rx fifo */
 outp ((port + 6), uart_regs.Rie); /* enable */

 set_bank (03); /* modemconfiguration */

 outp ((port + 0), uart_regs.Clcf); /* clock */
 set_dlab (03); /* */

Copyright © 1997 Steven J. Mastrianni Page 133 3/30/2005

 outp ((port + 0), uart_regs.Bbl); /* BRGB lsb */
 outp ((port + 1), uart_regs.Bbh); /* BRGB msb */
 reset_dlab (03); /* */
 outp ((port + 3), uart_regs.Bbcf); /* BRGB */
 outp ((port + 6), uart_regs.Tmie); /* timer b */

 set_bank (00); /* general cfg */
 outp ((port + 1), uart_regs.Ger); /* enable */
 outp ((port + 3), uart_regs.Lcr); /* 8 bit */
 outp ((port + 7), uart_regs.Acr0); /* CR */
 outp ((port + 4), uart_regs.Mcr_0); /* no DTR */
 set_dlab (00); /* */
 outp ((port + 0), uart_regs.Bal); /* BRGA lsb */
 outp ((port + 1), uart_regs.Bah); /* BRGA msb */
 reset_dlab (00);
 set_bank(01);

 Enable(); /* turn on */
}

void set_dlab (bank)

/* Set DLAB bit to allow access to divisior registers */

int bank;
{
 int inval;
 int port;

 port=UART_PORT_ADDRESS;
 set_bank (00);
 inval=inp(port +3);
 inval =inval | 0x80; /* set dlab in LCR */
 outp ((port+3),inval);
 set_bank (bank);
}

getsrc()

{
 int v,src;
 int port;

 port=UART_PORT_ADDRESS; /* get base address */
 v=inp(port+2); /* get data */
 src=v & 0x0e; /* mask bits */
 src=src/2; /* divide by 2 */
 return(src); /* and pass it back */
}

set_bank(bank_num)

/* set bank of 82050 uart */

int bank_num;

{
 int reg_val;
 int port;

 reg_val=bank_num*0x20; /* select bank numb */
 port=UART_PORT_ADDRESS; /* get real port */
 outp(port+gir_addr,reg_val); /* output */
}

void reset_dlab (bank)

/* Reset DLAB bit of LCR */

int bank;

{

Copyright © 1997 Steven J. Mastrianni Page 134 3/30/2005

 int inval;
 int port;

 port=UART_PORT_ADDRESS;
 set_bank (00);
 inval=inp (port +3);
 inval = (inval & 0x7f); /* dlab = 0 in LCR */
 outp ((port+3),inval);
 set_bank (bank);
}

/* 82050 interrupt handler */

void interrupt_handler ()
{
 int rupt_dev;
 int source;
 int cmd_b;
 int st_b;
 int port;
 int temp;
 int rxlevel;

 port=UART_PORT_ADDRESS;
 outp((port+2),0x20); /* switch to bank 1 */
 source = getsrc (); /* get vector */
 switch (source)
 {

 /* optional timer service routine */

 case timer :

 st_b=inp (port+3); /* dec transmit count */
 if (ThisReadRP == 0) /* nobody waiting */
 break;
 ThisReadRP->RPstatus=(RPDONE|RPERR|ERROR_NOT_READY);
 Run ((ULONG) ThisWriteRP); /* run thread */
 ThisWriteRP=0;
 break;

 case txm :
 case txf :

 /* spurious write interrupt */

 if (ThisWriteRP == 0) {
 temp=inp(port+2);
 break;
 }

 /* keep transmitting until no data left */

 if (!(QueueRead(&tx_queue,&outchar)))
 {
 outp((port), outchar);
 tickcount=MIN_TIMEOUT;
 break;
 }

 /* done writing, run blocked thread */

 tickcount=MIN_TIMEOUT;
 disable_write();
 ThisWriteRP->RPstatus = (RPDONE);
 Run ((ULONG) ThisWriteRP);
 ThisWriteRP=0;
 break;

 case ccr :

Copyright © 1997 Steven J. Mastrianni Page 135 3/30/2005

 /* control character, treat as normal */

 inchar=inp(port+5);

 case rxf :

 /* rx fifo service routine */

 if (ThisReadRP == 0)
 inchar=inp (port); /* get character */
 else
 {
 temp=inp(port+4);
 rxlevel=(temp & 0x70) / 0x10;

 /* empty out chip FIFO */

 while (rxlevel !=0) {

 inchar=inp (port); /* get character */
 rxlevel--;
 tickcount=MIN_TIMEOUT;

 /* write input data to queue */

 if(QueueWrite(&rx_queue,inchar))

 /* error, queue must be full */

 {
 ThisReadRP->RPstatus=(RPDONE|RPERR|ERROR_GEN_FAILURE);
 Run ((ULONG) ThisReadRP);
 ThisReadRP=0;
 break;
 }
 com_error_word |= inp(port+5);

 } /* while rxlevel */
 } /* else */
 } /* switch (source) */
 EOI(5);
}
void timer_handler()
{
 if (ThisReadRP == 0)
 return;

 tickcount--;
 if(tickcount == 0) {
 ThisReadRP->RPstatus=(RPDONE);
 Run ((ULONG) ThisReadRP);
 ThisReadRP=0L;
 tickcount=MIN_TIMEOUT;
 }
}

/* Device Initialization Routine */

int Init(PREQPACKET rp, int dev)
{
 register char *p;

 /* store DevHlp entry point */

 DevHlp = rp->s.Init.DevHlp;

 /* install interrupt hook in vector */

 if (SetTimer((PFUNCTION)timer_handler))
 goto fail;

 rx_queue.qsize=QUEUE_SIZE;

Copyright © 1997 Steven J. Mastrianni Page 136 3/30/2005

 tx_queue.qsize=QUEUE_SIZE; /* init queue */
 init(); /* init the port */
 tickcount=MIN_TIMEOUT; /* set timeout */

 if(SetIRQ(5,(PFUNCTION)interrupt_handler,0)) {

 /* if we failed, deinstall driver cs+ds=0 */
fail:
 DosPutMessage(1, 8, devhdr.DHname);
 DosPutMessage (1,strlen(IntFailMsg),IntFailMsg);
 rp->s.InitExit.finalCS = (OFFSET) 0;
 rp->s.InitExit.finalDS = (OFFSET) 0;
 return (RPDONE | RPERR | ERROR_BAD_COMMAND);
 }

/* output initialization message */

DosPutMessage(1, 8, devhdr.DHname);
DosPutMessage(1, strlen(MainMsg), MainMsg);

/* send back our cs and ds values to os/2 */

if (SegLimit(HIUSHORT((void *) Init),&rp->s.InitExit.finalCS)
 || SegLimit(HIUSHORT((void *) MainMsg),
 &rp->s.InitExit.finalDS))
 Abort();
 return(RPDONE);
}

Figure A-9. Serial device driver, 32-bit version.

Copyright © 1997 Steven J. Mastrianni Page 137 3/30/2005

	
	
	Chapter - Introduction
	
	Problem
	Purpose
	Importance of Study
	Scope of Study
	Rationale of Study
	Definition of Terms
	
	Overview of the Study
	
	Figure 1- The Role of the device driver.

	OS/2 Overview
	Figure 1- Real mode address calculation.
	
	Figure 1- 80286 protect mode addressing.
	Figure 1- 80386 linear addressing.

	The Proposal
	

	Chapter - Review of Related Literature
	Requirements
	Addressing
	Legacy Support

	
	Chapter - Methodology
	Approach
	Method and Database of Study
	Validity of Data
	Originality and Limitations of Data
	Summary

	
	Chapter - Analysis of the Problem
	How We Tested
	Header File Conversion
	Driver Code Conversion
	Driver Loading
	Resource Allocation
	Driver Information File
	
	Figure 4. Sample DIF File
	Figure 4. DIF File Interrupt Entry

	
	Recovery
	Device Locator
	Configuration Manager
	Dynamic Loading
	Dynamic Driver Binding
	Debugger Modifications

	
	Chapter - Summary and Conclusions
	Conclusions
	Recommended Steps
	Size
	Necessary Changes to OS/2
	Conclusions

	Bibliography
	Appendix A – Listings
	Figure A- OS/2 parallel device driver, 16-bit version.
	Figure A- Parallel driver header file.
	Figure A- Driver library header file, 16-bit.
	Figure A- Driver library header file, 32-bit.
	Figure A- Simple OS/2 parallel device driver, 32-bit version.
	Figure A- Memory-mapped device driver, 16-bit version.
	Figure A- Memory-mapped driver, 32-bit version.
	Figure A- Serial device driver, 16-bit version.
	Figure A- Serial device driver, 32-bit version.

